• Title/Summary/Keyword: Flow properties

Search Result 3,786, Processing Time 0.028 seconds

A Study on Heat Flow of Laser-Welded Dissimilar Steel Joints with Gap (틈새가 존재하는 이종강 레이저 용접부의 열유동에 관한연구)

  • Yang, Hae-Sug
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.5-15
    • /
    • 2007
  • A welding structures is generally composed of dissimilar steel materials in order to reduce weight cost, and has a gap to fill the welding agent. Also, heat flow analysis should be fulfilled for structure existing of gap to figure out residual stress which is generated after welding. Since mechanical properties of welding structure composed of dissimilar steel is more fragile than mechanical properties of welding structure consisted of same material, heat flow analysis verifying this should be fulfilled as well. Therefore, on this research, heat flow analysis about dissimilar steel weldment consisted of gap existing AISI304 and AISI630 is practiced so that it could be a basic data of research about mechanical properties of gap existing dissimilar steel welding part which is going to be studied later on. During heat flow analysis, heat input model which based on Gaussian profile and using volume heat flux was newly consisted and applied. In addition, for verifying of analysis on this research, gap existing dissimilar steel weldment which had gap of 0.25mm and was welded using Nd-YAG. The welding profile and temperature distribution for weldment during welding was compared to the result which was gotten through heat flow analysis. Both of those results corresponded each other.

STUDY ON BEHAVIOR OF LIQUID NITROGEN IN POROUS MEDIA (다공성 매질에서 액화질소의 거동에 대한 연구)

  • Choi, S.W.;Lee, W.I.
    • Journal of computational fluids engineering
    • /
    • v.18 no.2
    • /
    • pp.17-25
    • /
    • 2013
  • The process of flow through porous media is of interest a wide range of engineering fields and areas, and the importance of fluid flow with a change in phase arises from the fact that many industrial processes rely on these phenomena for materials process, energy transfer. Especially, the flow phenomena of cryogenic liquid subjected to evaporation is of interest to investigate how the cryogenic liquid behaves in the porous structure. In this study, thermo physical properties, morphological properties of the glass wool with different bulk densities in terms of its temperature-dependence and permeability behaviors under different applying pressure are discussed. Using the experimentally determined properties, characteristics of two main experimental results are investigated. In addition, simulation results are used to realize the cryogenic liquid's flow in porous media, and are compared with experimental results. By using the experimentally determined properties, more reasonable results can be suggested in dealing with porous media flow.

Effect of NCO/OH ratio and binder content with micro-AP on HTPB/AP/Al-based propellants mechanical properties

  • Zulfam Adnan;Nurul Musfirah Mazlan
    • Advances in materials Research
    • /
    • v.13 no.2
    • /
    • pp.129-140
    • /
    • 2024
  • This study evaluates the ratio of Toluene di-isocyanate (TDI) functional group isocyanate (NCO) to the binder functional hydroxyl group (OH) in HTPB/AP/Al-based propellants on their mechanical properties, flow rate, and viscosity to determine the limitations of NCO/OH in the composition of solid propellants. The propellants consisted of hydroxyl-terminated polybutadiene (HTPB) polyurethane (PU), aluminum (Al) and tri-modal ammonium perchlorate (AP). The tri-modal AP consisted of 30% of coarse AP, 30% of medium AP, and 8% of fine AP. The ratio of NCO/OH varies from 0.73 to 0.85, with two binder percentages of 10.5% and 12%. An increase in NCO/OH ratio with 10.5% binder provided 20%, 95%, and 8 to 9% increments in UTS, modulus, and hardness, respectively. However, the propellant elongation, density, and flow rate decreased by 170%, 0.2%, and 11-12%, respectively. Viscosity increased 20% based on initial hour reading. The 12% binder provides 27%, 47%, and 5~6% an increment of UTS, modulus and hardness respectively. However, the propellant elongation, density, and flow rate decreased by 47%, 0.17% and 27%, respectively. The viscosity increased 30% based on initial hour reading. This study suggests the NCO/OH value of 0.77 and 10.5~11% binder content in propellant based on the mechanical properties, flow rate, and viscosity for better processing and pot life.

The Equilibrium between Dilatant and Thixotropic Flow Units

  • 방정환;김남정;최상원;김응렬;한상준
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.3
    • /
    • pp.262-268
    • /
    • 1996
  • Flow properties of all suspensions are controlled by their flow units. The factors effecting on the flow units are the characteristics of the particle itself (surface properties, particle sizes, particle shapes and etc.), the electrostatic interactions among the particles and the influences of the medium in the suspensions. Here, we studied the transition between the flow units with shear rate which can be added to the above factors. For the concentrated starch-water suspensions, by using the Couette type rotational viscometer, we confirmed that at low shear rate, dilatancy is appeared, but it is transformed to thixotropy with increasing shear rate. In order to explain this fact, we derived the following flow equation, representing the transition from dilatancy to thixotropy with shear rate, by assuming the equilibrium between the flow units. f = X1β1s./α1 + 1/(1+Kexp(c0s.2/RT))((1-X1)/α2)sinh-1{(β2)0 s. exp(c2s.2/RT)} + K exp(c0s.2/RT)/(1+K exp(c0s.2/RT))((1-X1)/α3)sinh-1{(β3)0 s. exp(-c3s.2/RT)} By applying this flow equation to the experimental flow curves for the concentrated starch-water suspensions, the flow parameters were obtained. And, by substituting the obtained flow parameters to the flow equation, the theoretical flow curves were reproduced. Also, Ostwald curve was represented by applying the flow equation, and the applicability for stress relaxation was discussed.

Comparison of mechanical properties and flowability of dental impression materials (치과용 인상재의 기계적 물성 및 흐름성 비교)

  • Kim, Ji-Yeob;Song, Kun-Ho;Lee, Kwang-Rae
    • Journal of Industrial Technology
    • /
    • v.36
    • /
    • pp.39-43
    • /
    • 2016
  • The purpose of this study is to determine and compare the mechanical and flow properties of polyvinylsiloxane impression pastes. Twelve polyvinylsiloxane impression materials were used. As mechanical properties, tensile strength and tear resistance were measured. Impression materials are subjected to tensile stresses when they are removed from the oral cavity and from stone models and tear resistance is the ability of the material to resist tearing under a tensile stress. Flow is dependent on the ability of the material to resist shear forces. Flow tests were performed to determine the handling characteristics and was measured using a shark fin testing device. An impression material must be able to penetrate the narrow subgingival sulcus and tight interproximal areas. Therefore, it must be able to resist the shear forces as it is pushed between tooth and gingival walls. It is necessary to understand the properties of interocclusal recording materials and is considered that the results obtained in this study will provide guideline information for the manufacturing of impression materials and for selecting appropriate impression materials.

  • PDF

Spherical Indentation Testing to Evaluate Mechanical Properties In 1Cr-1Mo-0.25V Steel (Spherical Indentation Testing에 의한 1Cr-1Mo-0.25V 강의 기계적 물성 평가)

  • Lee, J.M.;Nam, Y.H.;Nham, S.H.;Lee, S.S.;Lee, O.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.266-271
    • /
    • 2001
  • Spherical indentation technique was developed to evaluate the flow properties of metallic materials in carbon steel, stainless steel and alloys, etc. Through the spherical indentation test, differently degraded 1Cr-1Mo-0.25V steel's mechanical properties were observed and compared with conventional standard test data. The flow properties of 1Cr-1Mo-0.25V steels were estimated by analyzing the indentation load-depth curve. To characterize the flow property, we used material yield slope and constraint factor index rather than strain-hardening exponent because the variation of strain-hardening exponent was very little and the data showed irregularly. And the constraint factor's effect was small when the material yield slope was taken into account.

  • PDF

The role of extensional rheology in polymer processing

  • Baird, Donald G.
    • Korea-Australia Rheology Journal
    • /
    • v.11 no.4
    • /
    • pp.305-311
    • /
    • 1999
  • The shear behavior of polymers obtained by means of devices such as capillary and cone-and-plate rheo-meters is commonly used to assess their processing performance and as a characterization tool. However, the number of instances when two polymers have the same shear properties but perform differently during certain types of processing operations (e.g. film blowing and sheet extrusion) indicate that shear properties alone may not be sufficient to characterize polymeric fluids. We begin by defining the kinematics of shear-free or extensional flow and the associated material functions. The extensional and shear behavior of three different types of polyethylene (PE) are then compared to illustrate the points that one cannot ascertain the extensional properties of polymer melts from their shear properties and, furthermore, there may not be a simple relation between properties obtained from one type of extensional flow and those of another type. The kinematics of most processing flows are extensional rather than shear in nature, and , hence, the performance of polymers during processes such as fiber spinning, film casting, film blowing, thermoforming, blow molding, and even extrusion is more readily accounted for through extensional viscosity measurements. Methods for carrying out extensional flow measurements are then reviewed including approximate methods. To illustrate the sensitivity of extensional viscosity measurements to subtle changes in the molecular architecture of PEs, results are presented for samples with a narrow molecular weight distribution but with varying numbers of long chain branches. Finally, constitutive equations which allow one to separate shear and extensional flow behavior are discussed as any attempts to simulate the subtle processing differences between two polymers will require constitutive equations of this nature.

  • PDF

Relations between rheological and mechanical properties of fiber reinforced mortar

  • Cao, Mingli;Li, Li;Xu, Ling
    • Computers and Concrete
    • /
    • v.20 no.4
    • /
    • pp.449-459
    • /
    • 2017
  • Fresh and hardened behaviors of a new hybrid fiber (steel fiber, polyvinyl alcohol fiber and calcium carbonate whisker) reinforced cementitious composites (HyFRCC) with admixtures (fly ash, silica fume and water reducer) have been studied. Within the limitations of the equipment and testing program, it is illustrated that the rheological properties of the new HyFRCC conform to the modified Bingham model. The relations between flow spread and yield stress as well as flow rate and plastic viscosity both conform well with negative exponent correlation, justifying that slump flow and flow rate test can be applied to replace the other two as simple rheology measurement and control method in jobsite. In addition, for the new HyFRCC with fly ash and water reducer, the mathematical model between the rheological and mechanical properties conform well with the quadratic function, and these quadratic function curves are always concave upward. Based on mathematical analysis, an optimal range of rheology/ flowability can be identified to achieve ideal mechanical properties. In addition, this optimization method can be extended to PVA fiber reinforced cement-based composites.

The Change of Mechanical Properties of Alkali Hydrolyzed PET Fabric with Tank/Liquor-flow Machine - Bending and Shear Properties - (PET직물의 Tank/Liquor-flow 감량에 의한 역학적 특성변화 -굽힘.전단특성-)

  • 서말용;한선주;김삼수;허만우;박기수;장두상
    • Textile Coloration and Finishing
    • /
    • v.10 no.4
    • /
    • pp.37-44
    • /
    • 1998
  • The purpose of this study was to elucidate the effect of weight loss of polyethylene terephthalate(PET) fabrics on the mechanical properties such as bending and shear. In order to compare the effect of treatment machine on the mechanical properies of treated PET fabrics, PET fabrics were hydrolyzed with NaOH aqueous solution using Tank machine and Liquor flow machine, respectively. The results were as follows : 1. The bending rigidity and shear stiffness of hydrolyzed PET fabric decreased markedly up to about 10% weight loss regardless of treatment machines. At the above 10% weight loss, the variation of these properties is nearly unchanged. In addition, the bending hysteresis and shear hysteresis also showed similar trend. 2. Weft density change of PET fabrics treated with Liquor flow machine decreased by 1pick/inch. It is assumed that this is attributed to the tension during the treatment of Liquor flow machine. On the other hand, the weft density change of PET fabrics treated with Tank machine is scarcely influeneced by the weight loss. While warp density of PET fabrics treated with Liquor flow machine had no change with weight loss, warp density of PET fabrics treated with Tank machine decreased by 6pick/inch due to the tension. 3. The bending rigidity and shear stiffness of PET fabrics hydrolyzed with liquor flow machine slightly higher than with Tank m/c at the above 10% weight loss. It is assumed that this is caused by the increasement of the crossing pressure of warp and weft yarn and contact points of filaments in the yarns. Also, the bending and shear hysteresis of PET fabrics treated with Tank machine were higher than that of liquor flow machine.

  • PDF

An Experimental Study on the Fundamental Properties of Porous Concrete by Paste Flow, Compaction Time and Compaction Thickness (페이스트플로우, 진동다짐시간 및 다짐두께에 따른 포러스콘크리트의 기초물성에 관한 실험적 연구)

  • 이성일;이종호;김재환;최세진;백용관;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.91-96
    • /
    • 2002
  • This study is to analyze the influence of paste flow, compaction time and compaction thickness on the fundamental properties of porous concrete. Results of this study were shown as follows; 1) As paste flow increase, compaction time according to paste flow and compaction thickness decrease. Also, though paste flow is same, as compaction thickness increase, compaction time Increase. So It must be considered that the influence of compaction time according to paste flow and compaction thickness. 2) In the range of this study, compressive strength is the highest value at paste flow 190mm. 3) Occasion of manufactured compactor in this study compaction thickness 10, 15cm is influenced heavily but compaction thickness 20cm is influenced slightly.

  • PDF