• Title/Summary/Keyword: Flow of space

Search Result 2,709, Processing Time 0.037 seconds

Surface roughness crushing effect on shear behavior using PFC (PFC를 이용한 평면 파쇄가 전단 거동에 미치는 효과)

  • Kim, Eun-Kyung;Jeong, Da-Woon;Lee, Seok-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.4
    • /
    • pp.321-336
    • /
    • 2012
  • The shear behavior at the particle/surface interface such as rock joint can determine the mechanical behavior of whole structure. Therefore, a fundamental understanding of the mechanisms governing its behavior and accurately estimation of the interface strength is essential. In this paper, PFC, a numerical analysis program of discrete element method was used to investigate the effects of the surface roughness crushing on interface strength. The surface roughness was characterized by smooth, intermediate, and rough surface, respectively. Particle shape was classified into one ball model of circular shape and 3 ball model of triangular shape. The surface shape was modelled by wall model of non-crushing surface and ball model of crushing surface. The results showed that as the bonding strength of ball model decreases, lower interface strength is induced. After the surface roughness crushing was occurred, the interface strength tended to converge and higher bonding strength induced lower surface roughness crushing. Higher friction angle was induced in wall model and higher surface roughness induced the higher friction angle. From these findings, it is verified that the surface roughness and surface roughness crushing effect on the particle/surface interface shear behavior.

Estimation of the amount of refrigerant in artificial ground freezing for subsea tunnel (해저터널 인공 동결공법에서의 냉매 사용량 산정)

  • Son, Youngjin;Choi, Hangseok;Ko, Tae Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.255-268
    • /
    • 2018
  • Subsea tunnel can be highly vulnerable to seawater intrusion due to unexpected high-water pressure during construction. An artificial ground freezing (AGF) will be a promising alternative to conventional reinforcement or water-tightening technology under high-water pressure conditions. In this study, the freezing energy and required time was calculated by the theoretical model of the heat flow to estimate the total amount of refrigerant required for the artificial ground freezing. A lab-scale freezing chamber was devised to investigate changes in the thermal and mechanical properties of sandy soil corresponding to the variation of the salinity and water pressure. The freezing time was measured with different conditions during the chamber freezing tests. Its validity was evaluated by comparing the results between the freezing chamber experiment and the numerical analysis. In particular, the freezing time showed no significant difference between the theoretical model and the numerical analysis. The amount of refrigerant for artificial ground freezing was estimated from the numerical analysis and the freezing efficiency obtained from the chamber test. In addition, the energy ratio for maintaining frozen status was calculated by the proposed formula. It is believed that the energy ratio for freezing will depend on the depth of rock cover in the subsea tunnels and the water temperature on the sea floor.

Optimum design analysis of ICP(Inductively Coupled Plasma) torch for high enthalpy thermal plasma flow (고엔탈피 열유동 발생용 고주파 유도결합 플라즈마 토치의 최적 설계변수 해석)

  • Seo, Jun-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.4
    • /
    • pp.316-329
    • /
    • 2012
  • In this paper, optimum design process of ICP (Inductively Coupled Plasma) torch, which has been used widely in aerospace application, such as supersonic plasma wind tunnel, is presented. For this purpose, the behaviors of equivalent circuit parameters (equivalent resistance and inductance, coupling efficiency) were investigated according to the variations of torch design parameters (frequency, $f$, confinement tube radius, $R$ and coil turn numbers, $N$) in the basis of analytical and numerical MHD (Magneto Hydro-Dynamics) models combined with electrical circuit theory. From the results, it is found that equivalent resistance is increased with the increase of $f$ values but vice versa for equivalent inductance. For elevated values of $R$ and $N$, however, both parameters tend to increase. Based on these observations, ICP torch with a power level of 10 kW can be optimized at the design ranges of $f$=4~6 MHz, $R$=17~25 mm and $N$=3~4 to maximize the electrical coupling efficiency, which is the ratio of equivalent resistance to equivalent inductance.

An Empirical Analysis on Public Transportation Demand and TOD Design Factors in Seoul subway adjacent area (서울시 역세권의 TOD환경과 대중교통이용수요 관계분석)

  • Moon, Young-Il;Rho, Jeong-Hyun
    • International Journal of Highway Engineering
    • /
    • v.13 no.4
    • /
    • pp.211-220
    • /
    • 2011
  • TOD(Transit Oriented Development) has recently been active, which presents that TOD planning elements should be comprehensively taken into consideration in order to enhance domestic transit ridership by changing environments in rail station areas and an empirical analysis on the type of rail station areas and transportation demand should be a prerequisite for usage of future development planning. This study aims to grasp a variety of TOD of influence factors in Seoul rail station area and to perform analysis to identify relationship between public transportation demand and these TOD design factors. To make it come true, we gathered data with respect to Density, Diversity, and Accessibility as representative TOD planning elements and carried out factorial and regression analysis. Consequently, we drew 7 influence factors base on factorial analysis: Factor 1(Diversity/ -Use Mix(LUM)), Factor 2(Density/development density), Factor 3(Accessibility/public transportation facility supply), Factor 4(Design/street design), Factor 5(Green/access mode (pedestrian, bike), Factor 6(Design/subway size), Factor 7(Accessibility/Public transit operation) As the result of model development by using factorial and regression analysis, positive influence factors on passenger flow in rail station area are Factor 1(Diversity : Land-Use Mix), Factor 3(Accessibility : public transportation facility supply), Factor 2(Density : development density), Factor 5(Design/ access mode) and Factor 6(subway size) Next, negative influence factor on passenger flow in rail station area shows Factor 7(Accessibility/Public transit operation) as the most influential factor. This is because the growth of service interval of linked subway and bus leads to reduced demand.

A fundamental study on the ventilation analysis method for the network-type tunnel - focused on the none hardy-cross method (네트워크형 터널의 환기해석 방법에 대한 기초연구-비 Hardy-Cross 방법을 중심으로)

  • Kim, Hyo-Gyu;Choi, Pan-Gyu;Ryu, Ji-Oh;Lee, Chang-Woo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.3
    • /
    • pp.291-303
    • /
    • 2016
  • Recently, various forms of diverging sections in tunnels have been designed as the demand for underground passageway in urban areas increases. Therefore, the complexity of the ventilation system in tunnels with diverging sections requires a ventilation analysis method different from the conventional method for the straight tunnels. None of the domestic and foreign tunnel ventilation design standards specifies the method for the ventilation network analysis, and the numerical analysis methods have been most widely used. This paper aims at reviewing the ventilation network analytical method applicable as the design standard. The proposed method is based on the characteristic equations rather than the numerical analysis. Thanks to the advantages of easy application, the Hardy-Cross method has been widely applied in the fields of mine ventilation and tunnel ventilation. However, limitations with the cutting errors in the Taylor series expansion and the convergence problem mainly caused by the mesh selection algorithm have been reported. Therefore, this paper examines the applicability of the ventilation analysis method for network-type tunnels with the gradient method that can analyze flow rate and pressure simultaneously without the configuration of mesh. A simple ventilation analysis method for network-type tunnels is proposed.

Flow and smoke behavior of a longitudinal ventilation tunnel with various velocities using computational fluid dynamics (팬의 운전조건에 따른 종류식환기터널 내의 연기거동에 관한 전산유체역학연구)

  • Lee, J.H.;Kwon, Y.J.;Kim, D.E.
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.1
    • /
    • pp.105-115
    • /
    • 2014
  • A numerical analysis on the smoke behavior and evacuee safety has been performed with computational fluid dynamics. The purpose of this study is to build computational processes for an evacuation and prevention of a fire disaster of a 3 km-length tunnel in Korea. To save computational cost, 1.5 km of the tunnel that can include a few cross-passing tunnels is considered. We are going to assess the fire safety in a road tunnel according to the smoke level, which consists of the smoke density and the height from the floor. The smoke density is obtained in detail from three-dimensional unsteady CFD analysis. To obtain proper temperature distributions on the tunnel wall, one-dimensional conduction equation is considered instead of an adiabatic wall boundary or a constant heat flux. The tunnel considered in this study equips the cross passing tunnels for evacuees every 250 m. The distance is critical in both safety and economy. The more cross passing tunnels, the more safe but the more expensive. Three different jet fan operations can be considered in this study; under- and over-critical velocities for normal traffic condition and 0-velocoty operation for the traffic congestion. The SE (smoke environment) level maps show a smoke environment and an evacuating behavior every moment.

Aerodynamic Force Measurements and PIV Study for the Twisting Angle of a Swift Wing Model (칼새 날개의 비틀림 각에 대한 공력측정 및 PIV 연구)

  • Bok, Jung Jin;Chang, Jo Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.9
    • /
    • pp.765-772
    • /
    • 2015
  • Aerodynamic force measurements and phase-locked PIV study were carried out to check the bio-mimetic MAV applicability of a swift flight. Two-rotational DOF robotic wing model and blowing-type wind tunnel were employed. The amplitude of twist angle were ${\pm}0$, ${\pm}5$, ${\pm}10$, and ${\pm}20$ deg. and stroke angles were manipulated by simple harmonic function with out-of-phase in regards to the stroke motion. It is acknowledged that the time-varying lift coefficients in accordance with the change of the twist angle did not result in any noticeable differences, just the small decrease and delay. However, the drag exhibited that the small change of the twist angle can produce large thrust. These findings imply why a swift uses small twist angle during flight. The PIV results displayed that the delay of aerodynamic forces is highly associated with the vortical structures around the wing. It is therefore indicated that a process of designing a swift-based Micro Air Vehicle should take the twist angle into consideration, as the essential parameter.

Experimental Study on Aerodynamic Performance and Wake Characteristics of the Small Ducted Fan for VTOL UAV (수직 이착륙 무인기용 소형 덕티드팬의 공력성능 및 후류특성에 관한 실험적 연구)

  • Shin, Soo-Hee;Lee, Seung-Hun;Kim, Yang-Won;Cho, Tae-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.1
    • /
    • pp.1-12
    • /
    • 2022
  • Wind tunnel test for a small scale electric ducted fan with a 104mm diameter was conducted to analyze the aerodynamic characteristics when it was used as a propulsion system of tilt-propeller UAV. Experimental conditions were derived from flight conditions of a sub-scaled OPPAV. Forces and moments of the ducted fan model were measured by a 6-axis balance and 3-dimensional wake vectors which could induce an aerodynamic influence in the vehicle were measured by 5-hole probes. Thrust and torque on hover and cruise conditions were measured and analyzed to drive out the operating conditions when it was applied in the sub-scaled OPPAV. On transition conditions, thrust keep its value with tilt angle variation below 40° and increase after that. But, sideforce increase constantly until 75°. The maximum axial velocity in the wake on hover and cruise conditions was around 60m/s and tangential velocity was around 12m/s. The position of the maximum axial velocity and vortex center move off the fan rotation center line as the tilt angle increases.

Measurement of Terminal Velocity for Scatter Prevention of Powder in the Voloxidizer for Oxidation of UO$_{2}$ Pellet (UO$_{2}$ 펠릿 산화로의 분말 비산 방지를 위한 최종속도 측정)

  • Kim Young-Hwan;Yoon Ji-Sup;Jung Jae-Hoo;Jin Jae-Hyun;Hong Dong-Hee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.2
    • /
    • pp.77-84
    • /
    • 2005
  • A voloxidizer for a hot cell demonstration, that handles spent fuels of a high radiation level in a limited space should be small and spent fuel powders should not be dispersed out of the equipment involved. In this study a density rate equation as well as the Stokes'equation has been proposed in order to obtain the theoretical terminal velocity of powders. The terminal velocity of U$_{3}$O$_{8}$ has been predicted by using the terminal velocity of SiO$_{2}$, and then determination has been the optimum air flow rate which is able to prevent powders from scattering. An equation which has shown a relationship between theoretical terminal velocities of U$_{3}$O$_{8}$ and SiO$_{2}$ has been derived with the help of the Stokes'equation, and then an experimental verification made for the theoretical Stokes' equation of SiO$_{2}$ by means of an experimental device made of acryl. The theoretical terminal velocity based on the proposed density rate equation has been verified by detecting U$_{3}$O$_{8}$ powders in a filter installed in the mock-up voloxidizer. As the results, the optimum air flow rates seem to be 20 LPM by the Stokes'equation while they are 14.5 L/min by the density rate equation. At the experiments with the mock-up voloxidizer, a trace amount of U$_{3}$O$_{8}$ seems to be detectable at the air flow rate of 14.5 L/min by the density rate equation, but U$_{3}$O$_{8}$ powders of 7$\mu$m diameter seem detectable at the air flow rate of 20 L/min by the Stokes'equation. It is revealed that 14.5 L/min is the optimum air flowe rate which is capable of preventing U$_{3}$O$_{8}$ powders from scattering in the UO$_{2}$ voloxidizer and the proposed density rate equation is proper to calculate the terminal velocity of U$_{3}$O$_{8}$ powders.

  • PDF

A Study on the Airflow Distribution in the Diagonal Ventilation Circuit for the Design of a High Level Radioactive Waste Repository (고준위 방사성 폐기물 처분장 설계를 위한 Diagonal 환기 회로 내 공기량 분배에 관한 연구)

  • Hwang, In-Phil;Choi, Heui-Joo;Roh, Jang-Hoon;Kim, Jin
    • Tunnel and Underground Space
    • /
    • v.22 no.3
    • /
    • pp.173-180
    • /
    • 2012
  • In this study, diagonal ventilation circuits that are advantageous in air flow direction control were studied. Based on the results of the study, it could be seen that air volumes in diagonal ventilation circuits could also be calculated using numerical formulas or programs if the air volumes and air flow directions to be infused into diagonal branches are determined in advance as with other serial/parallel circuits. To apply the results, design plans for high level radioactive waste repositories applied with diagonal ventilation circuits and parallel ventilation circuits. To compared the each design plans and obtain expected operation results, ventilation network simulations were conducted through the Ventsim program which is a ventilation networking program. Based on the results, in the case of diagonal repositories that was expected to cause great increases in resistance, fan pressure was 1570 pa, total flux was 84 $m^3/s$, fan efficiency was 76.4%, fan power consumption was 181.2 kW and annual fan operating costs were 178,710,838 and thus maximum around 8% differences were shown in pressure and flux values and a difference of around 1.5% was shown in terms of operating costs.