• Title/Summary/Keyword: Flow of space

Search Result 2,699, Processing Time 0.03 seconds

A Study on the Expression of Movement in Architectural Design in the first Machine Age (제1기계시대 건축디자인에서의 운동의 표현에 관한 연구)

  • Kim Won-Gaff
    • Korean Institute of Interior Design Journal
    • /
    • v.14 no.1
    • /
    • pp.28-36
    • /
    • 2005
  • The theme of modern architecture was various expression of dynamism and the flow of space. It was because that the space become the main theme of architecture since the late 19th century, and the space was changed from the 3rd dimension into the 4th dimensional space-time continuum. Though many avant-garde artists in the early 20th century did not understand the theory of relativity, they became conscious of the concept of space-time continuum, and tried to express the movement as the duration in time which Bergson defined. Many architects in the first machine age conceived the movement of architecture, and understand it as the dynamism of the mass and in the space. But especially, Sant'Elia and Hilberseimer expressed it as the flow of various force and vector In the metropolis as entire system. And Some architects conceived it as real movement of the building and expressed it as the rotary motion of building, movable partition and furniture, mobile prefabricated building. This study analyzed the expression of movement in architecture in the first machine age.

Recurrent dipolarizations of near-Earth magnetotail during high-speed solar wind streamers

  • Lee, En-Sang;Parks, George K.;Wilber, Mark;Lin, Naiguo;Lee, Dae-Young;Kim, Khan-Hyuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.94.1-94.1
    • /
    • 2011
  • Recurrent substorms occur when high-speed solar wind streamers pass by Earth's magnetosphere. Most of the previous researches have been done using the observations obtained at the geosynchronous orbit focusing on the relationship between the solar wind disturbances and the occurrence of substorms. However, it is important to investigate the dynamics of the magnetotail because the magnetotail is the place where substorms develop. In this study we investigated the observations of recurrent dipolarizations in the near-Earth magnetotail that occurred during high-speed solar wind streamers. The dipolarizations and subsequent stretchings have occurred for more than three days with the average period of ~2 - 3 hours. The average period of ~2 - 3 hours is consistent with the average occurrence period of recurrent substorms. Also, the observed signatures on the geosynchronous orbit and the ground show recurrent substorms have occurred during the event. These suggest that the recurrent dipolarizations in the near-Earth magnetotail should be closely related to the recurrent substorms. On the other hand, there was no clear flow activities directly associated with the dipolarizations, except for some intermittent bursty flow activities. We will discuss the detailed characteristics of the dipolarizations and the relationship with recurrent substorms.

  • PDF

Assessment of Tip Shape Effect on Rotor Aerodynamic Performance in Hover

  • Hwang, Je Young;Kwon, Oh Joon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.295-310
    • /
    • 2015
  • In the present study, an unstructured mixed mesh flow solver was used to conduct a numerical prediction of the aerodynamic performance of the S-76 rotor in hover. For the present mixed mesh methodology, the near-body flow domain was modeled by using body-fitted prismatic/tetrahedral cells while Cartesian mesh cells were filled in the off-body region. A high-order accurate weighted essentially non-oscillatory (WENO) scheme was employed to better resolve the flow characteristics in the off-body flow region. An overset mesh technique was adopted to transfer the flow variables between the two different mesh regions, and computations were carried out for three different blade configurations including swept-taper, rectangular, and swept-taper-anhedral tip shapes. The results of the simulation were compared against experimental data, and the computations were also made to investigate the effect of the blade tip Mach number. The detailed flow characteristics were also examined, including the tip-vortex trajectory, vortex core size, and first-passing tip vortex position that depended on the tip shape.

Validity of the Concept of the Unit Grid Fin by 3-D Calculation of Supersonic Grid Fin Flows (초음속 그리드핀 3차원 유동해석을 통한 단위 그리드핀 개념의 타당성 연구)

  • Lee, Hyeong Jin;Ko, Sang Ho;Kang, Tae Gon;Lee, Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.8
    • /
    • pp.609-615
    • /
    • 2021
  • Three-dimensional numerical study was carried out to evaluate the aerodynamic characteristics of the supersonic grid fins installed on SpaceX Falcon 9. The present three-dimensional flow results were compared to the results by the concept of the unit grid fin previously introduced for more efficient and simpler flow calculations, and the validity of the approach of the unit grid fin were evaluated. The aerodynamic characteristics in supersonic flights Mach 2.8 of SpaceX Falcon 9 with various angle of attacks were also obtained.

Design and heat transfer optimization of a 1 kW free-piston stirling engine for space reactor power system

  • Dai, Zhiwen;Wang, Chenglong;Zhang, Dalin;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2184-2194
    • /
    • 2021
  • The Free-Piston Stirling engine (FPSE) is of interest for many research in aerospace due to its advantages of long operating life, higher efficiency, and zero maintenance. In this study, a 1-kW FPSE was proposed by analyzing the requirements of Space Reactor Power Systems (SRPS), of which performance was evaluated by developing a code through the Simple Analysis Method. The results of SAM showed that the critical parameters of FPSE could satisfy the designed requirements. The heater of the FPSE was designed with the copper rectangular fins to enhance heat transfer, and the parametric study of the heater was performed with Computational Fluid Dynamics (CFD) software STAR-CCM+. The Performance Evaluation Criteria (PEC) was used to evaluate the heat transfer enhancement of the fins in the heater. The numerical results of the CFD program showed that pressure drop and Nusselt number ratio had a linear growth with the height of fins, and PEC number decreased as the height of fins increased, and the optimum height of the fin was set as 4 mm according to the minimum heat exchange surface area. This paper can provide theoretical supports for the design and numerical analysis of an FPSE for SRPSs.

Compressor Performance with Variation of Diffuser Vane Inlet Angle (디퓨저 베인각의 변화에 따른 압축기 성능 특성)

  • Bae, M. H.;Shin, Y. H.;Kim, K. H.;Kim, J. H.
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.55-60
    • /
    • 1999
  • A centrifugal compressor was tested with three different diffusers with plate vanes. The vane inlet angle was varied from 15 to 30 dog. The higher static pressure rises are obtained with lower vane stagger angle. In the stable region the static pressure field in vaneless space is very sensitive to flow rate. The impeller has a stabilizing effect over the whole stable operating range. The diffuser has a stabilizing effect at high flow rate but is destabilizing at low flow rate.

  • PDF

An Experimental Study on the Characteristics of Rectangular Supersonic Jet on a Flat Plate

  • Kwak, Ji-Young;Lee, Yeol
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.3
    • /
    • pp.324-331
    • /
    • 2016
  • The present study focuses on the characteristics of a supersonic jet flowing from a rectangular nozzle exit on a flat plate. Flow visualization techniques using schlieren and kerosene-lampblack tracing are utilized to investigate shock reflection structures and boundary-layer separations over a flat plate. Wall pressure measurements are also carried out to quantitatively analyze the flow structures. All observations are repeated for multiple jet flow boundary conditions by varying the flap length and nozzle pressure ratio. The experimental results show that the jet flow structures over the flat plate are highly three-dimensional with strong bleeding flows from the plate sides, and that they are sensitive to plate length and nozzle pressure ratio. A multi-component force measurement device is also utilized to observe the characteristics of the jet flow thrust vectoring over the plate. The maximum thrust deflection angle of the jet is about $8^{\circ}$, demonstrating the applicability of thrust vector control via a flat plate installed at the nozzle exit.

Impact of axial power distribution on thermal-hydraulic characteristics for thermionic reactor

  • Dai, Zhiwen;Wang, Chenglong;Zhang, Dalin;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.3910-3917
    • /
    • 2021
  • Reactor fuel's power distribution plays a vital role in designing the new generation thermionic Space Reactor Power Systems (SRPS). In this paper, the 1/12th SPACE-R's full reactor core was numerically analyzed with two kinds of different axial power distribution, to identify their impacts on thermal-hydraulic and thermoelectric characteristics. In the benchmark study, the maximum error between numerical results and existing data or design values ranged from 0.2 to 2.2%. Four main conclusions were obtained in the numerical analysis: a) The axial power distribution has less impact on coolant temperature. b) Axial power distribution influenced the emitter temperature distribution a lot, when the core power was cosine distributed, the maximum temperature of the emitter was 194 K higher than that of the uniform power distribution. c) Comparing to the cosine axial power distribution, the uniform axial power distribution would make the maximum temperature in each component of the reactor core much lower, reducing the requirements for core fuel material. d) Voltage and current distribution were similar to the axial electrode temperature distribution, and the axial power distribution has little effect on the output power.

A STUDY ON THE PRESSURE BEHAVIOR INSIDE PROPELLANT LINE OF SATELLITE (인공위성 연료배관의 유압특성 연구)

  • Choi, Jin-Chul;Kim, Jeong-Soo
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.3
    • /
    • pp.207-214
    • /
    • 2002
  • One of the way to derive design parameters of the fuel feeding system in satellite propulsion system is to analyze unsteady flow of liquid propellant (hydrazine). During steady thruster firing the flow rate is constant: if a thruster valve is abruptly shut down among a set of thrusters, pressure spikes much higher than the initial tank pressure occur. This renders the fuel flow unsteady, and the fluid pressure and flow rate to oscillate. If the pressure spikes are high enough, there are possibilities that propellant explosively decomposes, thruster valves we damaged, and adiabatic detonation of the hydrazine propellant is potentially incurred. Reflected shockwaves could also affect the calibration and operation of the pressure transducers. These necessitate the analysis of unsteady flow in the propulsion system design, and pressure behavior inside the propellant line obtained through some governing parameter variation is presented in this work.

A Flow Channel Design on IR Window Cooling Device (적외선 윈도우 냉각장치 유로 설계)

  • Park, Youn-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.6
    • /
    • pp.559-566
    • /
    • 2011
  • This paper presents the flow passage design for a window cooling device, which have a conical poppet valve and an emissive orifice. Computational flow analysis and experiment are conducted according to the poppet strokes. The results show satisfactory flow characteristics that pressure is reduced enough to endure material strength and the flow does not choked inside window. The correction factor of discharge coefficients is found between 2-dimensional analysis and experiments, which is applied to control coolant flow rates of the window cooling device.