• Title/Summary/Keyword: Flow model

Search Result 13,026, Processing Time 0.036 seconds

Incorporation of Henry-Fauske Critical Flow Model into TRAC-PF1

  • Hwang, Tae-Suk;Lee, Jae-Hoon;Yoo, Byung-Tae;Cho, Chang-Sok
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.713-718
    • /
    • 1998
  • Henry-Fauske critical flow model was incorporated into TRAC-PF1 to correct some errors in the original TRAC-PFI critical flow model. Henry-Fouske mode1 was numerically implemented and tested against steady-state steam-water experimental data. The model was incorporated into TRAC-PFI and code assessment against Marviken Critical Flow Tests 15 and 24 was carried out. Calculations using RELAP5/MOD3 were also made for comparison. Ten cases were calculated each test and sensitivity study on nodalization as well as critical flow or model was performed Stand-alone numerical model test and code assessment were done for verification and validation of code modification. Calculation results show that the modified version of TRAC-PF1 has a capability to model critical flow correctly in various conditions.

  • PDF

Prediction Modeling of Unburned Hydrocarbon Oxidation in the Exhaust Port of a Propane-Fueled SI Engine (프로판 엔진의 배기 포트에서 탄화수소 산화 예측을 위한 모델링)

  • 이형승;박종범;최회명;민경덕;김응서
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.2
    • /
    • pp.33-40
    • /
    • 2000
  • In order to investigate the exhaust structure and secondary oxidation of unburned hydrocarbon (HC) in the exhaust port, a numerical simulation was performed with 3-dimensional flow model and oxidation mechanism optimized for port oxidation. To predict the exhaust and oxidation process with consideration of flow, mixing, and temperature, 3-dimensional flow model and HC oxidation model were used with a commercial computational program, STAR-CD. The flow model were with moving grid for valve motion, which could predict the change of flow field with respect to valve lift. Optimization was performed to predict the HC oxidation with temperature range of 1200~1500K, low HC and oxygen concentration, existence of intermediate species, as typical in port oxidation. The constructed model could predict the port oxidation process with oxidation degree of 14~48% according to the engine operation conditions.

  • PDF

Evaluation of the Temperature Dependent Flow Stress Model for Thermoplastic Fiber Metal Laminates (열가소성 섬유금속적층판의 온도를 고려한 유동응력 예측에 대한 연구)

  • Park, E.T.;Lee, B.E.;Kang, D.S.;Kim, J.;Kang, B.S.;Song, W.J.
    • Transactions of Materials Processing
    • /
    • v.24 no.1
    • /
    • pp.52-61
    • /
    • 2015
  • Evaluation of the elevated temperature flow stress for thermoplastic fiber metal laminates(TFMLs) sheet, comprised of two aluminum sheets in the exterior layers and a self-reinforced polypropylene(SRPP) in the interior layer, was conducted. The flow stress as a function of temperature should be evaluated prior to the actual forming of these materials. The flow stress can be obtained experimentally by uniaxial tensile tests or analytically by deriving a flow stress model. However, the flow stress curve of TFMLs cannot be predicted properly by existing flow stress models because the deformation with temperature of these types of materials is different from that of a generic pure metallic material. Therefore, the flow stress model, which includes the effect of the temperature, should be carefully identified. In the current study, the flow stress of TFMLs were first predicted by using existing flow stress models such as Hollomon, Ludwik, and Johnson-Cook models. It is noted that these existing models could not effectively predict the flow stress. Flow stress models such as the modified Hollomon and modified Ludwik model were proposed with respect to temperatures of $23^{\circ}C$, $60^{\circ}C$, $90^{\circ}C$, $120^{\circ}C$. Then the stress-strain curves, which were predicted using the proposed flow stress models, were compared to the stress-strain curves obtained from experiments. It is confirmed that the proposed flow stress models can predict properly the temperature dependent flow stress of TFMLs.

Seepage Flow Model for Analysis of the Flow Field within the Beach (해빈내의 흐름장 해석을 위한 침투류 모형)

  • 김규한;박창근;한상대;편종근
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.9 no.3
    • /
    • pp.125-131
    • /
    • 1997
  • In order to analyze the feasibility of the drain layer construction method, which is one of the beach protection methods, a hybrid model is constructed by combining the wave model and the seepage flow model. The used wave model is the analytic solution given by Shuto (1972). and the seepage flow model is used by Richards equation which governs the saturated-unsaturated flow in the porous media. It is concluded by the sensitivity analysis of the hybrid model that the most sensitive parameter in the flow field within the beach is the saturated hydraulic conductivity. The developed hybrid model will be efficiently used in the analysis of the parameter when the drain layers are constructed in the beach, if the field datas are obtained more.

  • PDF

Optimal Design of Flow Path to Improve Stability on Coolant Heater (냉각수 가열장치의 안정화를 위한 유로 최적 설계)

  • Han, Dae Seong;Bae, Gyu Hyun;Yoon, Hyun Jin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.134-140
    • /
    • 2021
  • This study investigates the flow efficiency and temperature based on flow path shape. Five models are designed to the no flow path, one flow path, two flow path, three flow path, add inlet flow path and add interior space gradient. Results show that two flow model(add inlet flow path and add interior space gradient), It was confirmed that model(add inlet flow path) is the optimal shape for coolant heat transfer, and model(add interior space gradient) is the optimal shape for coolant flow, demonstrates optimal design among the five models. The results of this study can be utilized to efficiently control the coolant flow through various types of flow paths.

Development of a Conjunctive Surface-Subsurface Flow Model for Use in Land Surface Models at a Large Scale: Part I. Model Description (대규모 육지수문모형에서 사용 가능한 지표면 및 지표하 연계 물흐름 모형의 개발: I. 모형설명)

  • Choi, Hyun-Il
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.2
    • /
    • pp.59-63
    • /
    • 2008
  • The surface runoff is one of the important components for the surface water balance. However, most Land Surface Models(LSMs), coupled to climate models at a large scale for the prediction and prevention of disasters caused by climate changes, simplistically estimate surface runoff from the soil water budget. Ignoring the role of surface flow depth on the infiltration rate causes errors in both surface and subsurface flow calculations. Therefore, for the comprehensive terrestrial water and energy cycle predictions in LSMs, a conjunctive surface-subsurface flow model at a large scale is developed by coupling a 1-D diffusion wave model for surface flow with the 3-D Volume Averaged Soil-moisture Transport(VAST) model for subsurface flow. This paper describes the new conjunctive surface-subsurface flow formulation developed for improvement of the prediction of surface runoff and spatial distribution of soil water by topography, along with basic schemes related to the terrestrial hydrologic system in Common Land Model(CLM), one of the state-of-the-art LSMs.

A Convergent Investigation on the Air Flow Analysis of a Light Aircraft Propeller (경비행기 프로펠러의 공기 유동해석에 관한 융합 연구)

  • Choi, Kye-Kwang;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.12
    • /
    • pp.131-135
    • /
    • 2020
  • In this study, the models with three, five and ten wings of the propeller which made a light aircraft fly were performed by air flow analyses. As for the flow model A with the shape with five wings, Model A can be seen to be the most ideal flow of air. The flow of air through the number of wings, which is not too many or too few, shows the most smooth flowing form. The smaller the number of propeller blades, the smaller the flow of air. Model A is applied under pressure of up to 0.5631 MPa at the front of air flow. Also, models B and C are applied under pressures of 0.5758 MPa and 0.5589 MPa, respectively. Comparing the pressure contours for each model of flux, model B can be shown to have the highest pressure distribution. The result of this study can be used to investigate the air flow without actual testing. It also seems to be helpful in the aesthetic convergent design of light aircraft propeller.

Development of a distributed hydrological model considering hydrological change

  • Kim, Deasik;An, Hyunuk;Jang, Minwon;Kim, Seongjoon
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.3
    • /
    • pp.521-532
    • /
    • 2018
  • In recent decades, the dry stream phenomena of small and medium sized rivers have been attracting much attention as an important social problem. To prevent dry stream phenomena, it is necessary to build an infrastructure that manages rivers. To accurately determine the progress of dry stream phenomena, it is necessary to continuously measure the discharge and other hydrological factors for small and medium sized rivers. However, until now, the flow data for small and medium rivers in Korea has been insufficient. To overcome the lack of supporting data for supporting rational decision-making in policy and project implementation, a short- and long-term hydrological model was developed that takes into consideration hydrological changes such as the increase of the impervious area due to urban development and groundwater pumping, the construction of a large-scale sewage treatment plant, the maintenance of stream-oriented rivers, etc. In the developed model, the distributed grid is represented by three layers: Surface flow, interflow, and groundwater flow. The surface flow and intermediate flow flowed along the flow direction, and the groundwater flow was calculated by a two-dimensional groundwater analysis model such that the outflow occurred in all directions without a specific flow direction. The effects of land use and cover on evapotranspiration and infiltration and the effects of multiple landscapes can be simulated in the developed model.

Flood-Flow Managenent System Model of River Basin (하천유역의 홍수관리 시스템 모델)

  • Lee, Soon-Tak
    • Water for future
    • /
    • v.26 no.4
    • /
    • pp.117-125
    • /
    • 1993
  • A flood -flow management system model of river basin has been developed in this study. The system model consists of the observation and telemetering system, the rainfall forecasting and data-bank system, the flood runoff simulation system, the dam operation simulation system, the flood forecasting simulation system and the flood warning system. The Multivariate model(MV) and Meterological-factor regression model(FR) for rainfall forecasting and the Streamflow synthesis and reservoir regulation(SSARR) model for flood runoff simulation have been adopted for the development of a new system model for flood-flow management. These models are calibrated to determine the optimal parameters on the basis of observed rainfall, streamflow and other hydrological data during the past flood periods. The flood-flow management system model with SSARR model(FFMM-SR,FFMM-SR(FR) and FFMM-SR(MV)), in which the integrated operation of dams and rainfall forecasting in the basin are considered, is then suggested and applied for flood-flow management and forecasting. The results of the simulations done at the base stations are analysed and were found to be more accurate and effective in the FFMM-SR and FFMM0-SR(MV).

  • PDF

Flow Analysis with a Port/Valve Assembly and Cylinder Using a RNG k-$\varepsilon$ Model (RNG k-$\varepsilon$모델을 이용한 포트/밸브계 및 실린더내의 유동해석)

  • 양희천
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.436-444
    • /
    • 1998
  • Applicability of the RNG k-$\varepsilon$ model to the analysis of unsteady axisymmetric turbulent flow of a reciprocating engine including port/valve assembly is studied numerically. The governing equations based on non-orthogonal including port/valve assembly is studied numerically. The governing equations based on a non-orthogonal coordinate formulation with Cartesian velocity components are used and discretised by the finite volume method with non-staggered variable arrangements. The predicted results using the RNG k-$\varepsilon$ model of the unsteady axisymmetric turbulent flow within a cylinder of reciprocating model engine including port/valve assembly are compared to these from the modified k-$\varepsilon$ model and experimental data. Using the RNG k-$\varepsilon$ model seems the have some potential for the simulations of the unsteady turbulent flow within a port/valve-cylinder assembly over the modified k-$\varepsilon$model.

  • PDF