• Title/Summary/Keyword: Flow measurement

Search Result 3,208, Processing Time 0.027 seconds

Pharmacokinetics and Pharmacodynamics Following Oral Administration of Pimobendan-Pentoxifylline Powder Formulation Mixture in Dogs (개에서 피모벤단-펜톡시필린 분말 제형 합제의 경구투여시 약물약동학 및 약물약력학에 대한 연구)

  • Ro, Woong-bin;Song, Doo-won;Kang, Yeo-lim;Park, You-jin;Yoo, Cho-rong;Lee, Jong-ho;Kim, Ki-hun;Jeong, Sang-hee;Kang, Min-hee
    • Journal of Veterinary Clinics
    • /
    • v.36 no.1
    • /
    • pp.46-52
    • /
    • 2019
  • Pimobendan has inotropic and vasodilating effects on cardiovascular system, and pentoxifylline is known to decrease blood viscosity and improve blood flow to the heart. This study investigated the pharmacokinetics and pharmacodynamics following oral administration of pimobendan-pentoxifylline powder mixture in dogs. Eight healthy dogs were included and were divided into control (n = 4) and experimental (n = 4) groups. Vehicle powder and pimobendan-pentoxifylline powder mixture (pimobendane 0.25 mg/kg, pentoxifylline 15 mg/kg) were administrated orally to control and experimental groups, respectively. Plasma samples and measurement of echocardiographic indices were obtained for 24 hours following administration. Pimobendan and pentoxifylline concentrations were investigated using liquid chromatography-mass spectrometer (LC-MS) assay. The elimination half-life ($T_{1/2}$) were $2.65{\pm}1.42hours$ for pimobendan and $0.29{\pm}0.23hours$ for pentoxifylline. The time to reach maximum concentration ($T_{max}$) were $1.08{\pm}0.72hours$ for pimobendan and $0.29{\pm}0.14hours$ for pentoxifylline. The maximum blood concentration ($C_{max}$) were $2.83{\pm}1.50ng/mL$ for pimobendan and $1184.33{\pm}932.37ng/mL$ for pentoxifylline. Among echocardiographic indices, fractional shortening (FS), left ventricular internal diameter at end systole (LVIDs), and pre-ejection period (PEP) showed significant changes at 1-4 hours after the administration of pimobendan-pentoxifylline powder mixture. No adverse effects were observed during the investigation. This study demonstrates that pimobendan-pentoxifylline powder mixture can be used to control cardiovascular diseases in dogs.

Wind load and wind-induced effect of the large wind turbine tower-blade system considering blade yaw and interference

  • Ke, S.T.;Wang, X.H.;Ge, Y.J.
    • Wind and Structures
    • /
    • v.28 no.2
    • /
    • pp.71-87
    • /
    • 2019
  • The yaw and interference effects of blades affect aerodynamic performance of large wind turbine system significantly, thus influencing wind-induced response and stability performance of the tower-blade system. In this study, the 5MW wind turbine which was developed by Nanjing University of Aeronautics and Astronautics (NUAA) was chosen as the research object. Large eddy simulation on flow field and aerodynamics of its wind turbine system with different yaw angles($0^{\circ}$, $5^{\circ}$, $10^{\circ}$, $20^{\circ}$, $30^{\circ}$ and $45^{\circ}$) under the most unfavorable blade position was carried out. Results were compared with codes and measurement results at home and abroad, which verified validity of large eddy simulation. On this basis, effects of yaw angle on average wind pressure, fluctuating wind pressure, lift coefficient, resistance coefficient,streaming and wake characteristics on different interference zone of tower of wind turbine were analyzed. Next, the blade-cabin-tower-foundation integrated coupling model of the large wind turbine was constructed based on finite element method. Dynamic characteristics, wind-induced response and stability performance of the wind turbine structural system under different yaw angle were analyzed systematically. Research results demonstrate that with the increase of yaw angle, the maximum negative pressure and extreme negative pressure of the significant interference zone of the tower present a V-shaped variation trend, whereas the layer resistance coefficient increases gradually. By contrast, the maximum negative pressure, extreme negative pressure and layer resistance coefficient of the non-interference zone remain basically same. Effects of streaming and wake weaken gradually. When the yaw angle increases to $45^{\circ}$, aerodynamic force of the tower is close with that when there's no blade yaw and interference. As the height of significant interference zone increases, layer resistance coefficient decreases firstly and then increases under different yaw angles. Maximum means and mean square error (MSE) of radial displacement under different yaw angles all occur at circumferential $0^{\circ}$ and $180^{\circ}$ of the tower. The maximum bending moment at tower bottom is at circumferential $20^{\circ}$. When the yaw angle is $0^{\circ}$, the maximum downwind displacement responses of different blades are higher than 2.7 m. With the increase of yaw angle, MSEs of radial displacement at tower top, downwind displacement of blades, internal force at blade roots all decrease gradually, while the critical wind speed decreases firstly and then increases and finally decreases. The comprehensive analysis shows that the worst aerodynamic performance and wind-induced response of the wind turbine system are achieved when the yaw angle is $0^{\circ}$, whereas the worst stability performance and ultimate bearing capacity are achieved when the yaw angle is $45^{\circ}$.

Analysis of Minimum Detectable Activity Concentration of Water Samples and Evaluation of Effective Dose (물 시료의 최소검출가능 농도 분석과 유효선량 평가)

  • Jang, Eun-sung;Kim, Yang-su;Lee, Sun-young;Kim, Jung-Soo
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.7
    • /
    • pp.857-862
    • /
    • 2020
  • In March 2011, a tsunami off Japan caused radioactive material that had seeped into the sea from the Fukushima nuclear accident to flow to the Pacific Ocean, causing pollution to sea life. For a comparative evaluation with the area surrounding the site of a nuclear power plant by the release of radioactive materials, an area 20 to 30 km away from the emergency protection plan area was selected as a comparative point considering weather conditions, population distribution, etc. In addition, the government intends to analyze the minimum detection radiation received by residents around the nuclear power plant and evaluate the effective dose. Analysis of tritium radiation from water samples showed that most of the samples were not detected and that 0.0014 % to 0.777 % of the annual legal standard of 1 mSv for the general public had little effect on the human body. Therefore, the measurement and analysis of water samples around the nuclear power plant site is expected to help relieve anxiety, such as exposure to the general public and neighboring residents due to radiation release.

A study on the estimation and evaluation of ungauged reservoir inflow for local government's agricultural drought forecasting and warning (지자체 농업가뭄 예·경보를 위한 미계측 저수지의 유입량 추정 및 평가)

  • Choi, Jung-Ryel;Yoon, Hyeon-Cheol;Won, Chang-Hee;Lee, Byung-Hyun;Kim, Byung-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.6
    • /
    • pp.395-405
    • /
    • 2021
  • When issuing forecasts and alerts for agricultural drought, the relevant ministries only rely on the observation data from the reservoirs managed by the Korea Rural Community Corporation, which creates gaps between the drought analysis results at the local (si/gun) governments and the droughts actually experienced by local residents. Closing these gaps requires detailed local geoinformation on reservoirs, which in turn requires the information on reservoirs managed by local governments across Korea. However, installing water level and flow measurement equipment at all of the reservoirs would not be reasonable in terms of operation and cost effectiveness, and an alternate approach is required to efficiently generate information. In light of the above, this study validates and calibrates the parameters of the TANK model for reservoir basins, divided them into groups based on the characteristics of different basins, and applies the grouped parameters to unmeasured local government reservoirs to estimate and assess inflow. The findings show that the average determinant coefficient and the NSE of the group using rice paddies and inclinations are 0.63 and 0.62, respectively, indicating better results compared with the basin area and effective storage factors (determinant coefficient: 0.49, NSE: 0.47). The findings indicate the possibility of utilizing the information regarding unmeasured reservoirs managed by local governments.

Research Trends on Achievement Emotion (성취정서의 국내외 연구동향)

  • Park, Seo-Yeon;Yun, Mi-Seon
    • (The) Korean Journal of Educational Psychology
    • /
    • v.31 no.1
    • /
    • pp.35-58
    • /
    • 2017
  • The achievement emotion experienced by students in their academic settings is directly related with achievement activities or results. As the focuses of researches in the educational psychology have been extended to students' motives and emotion, the achievement emotion is also actively studied in Korea. The purpose of this study is to analyze researches on the achievement emotion according to social/cultural backgrounds by dividing them into domestic and foreign ones and understand flow and trend of the researches by structuring them. On the basis of the findings, it also aims to provide fundamental data necessary to examine the achievement emotion matched for academic settings in Korea. The objects of this study include a total of 105 domestic (n=47) and foreign (n=58) journal articles. The criteria of analysis are divided into period, contents and method of the study: the study was conducted without control of period; the contents include variables and achievement situations; and the method includes design and type of study, analysis methods, measurement tools and objects. The descriptive statistics of the materials were estimated by using the SPSS, and were analyzed by dividing them into domestic and foreign ones. The findings show that the researches on achievement emotion can be divided into examinations of the development of achievement emotion scale and those of the relationship between related variables. Thus, the conclusion suggests comprehensive discussions by arranging the trends of researches on the development of achievement emotion scale and the relationship between related variables.

A Study on Ground Heave Characteristics of Soft Ground with DCM (DCM으로 개량된 연약점토지반의 지반융기에 관한 고찰)

  • You, Seung-Kyong;Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.4
    • /
    • pp.75-84
    • /
    • 2020
  • This paper described the analysis result on heaving of soft ground with DCM column type, based on the results of laboratory model tests on the soft ground with DCM column. The heave characteristics of the soft ground were evaluated according to the application of DCM column in soft ground. The results showed that the heaving of soft ground without DCM column occurred rapidly when the lateral deformation of soft ground increased significantly under the 4th load step condition. In addition, the heaving of soft ground in final load step caused tensile failure of the ground surface. The maximum heaving of the soft ground with the DCM column occurred in the final load step, and the heaving quantity decreased in the order of pile, wall, and grid type. Especially, the soft ground with DCM of grid type effectively resisted ground heaving, even if it was extremely failure in the bottom ground of embankment. The results of the maximum heaving according to the measurement point showed that the heaving of the soft ground with DCM of grid type was 3.1% and 1.6% compared to that of the pile and wall type at the location of LVDT-1, and the heaving of the LVDT-2 position was 1.0% and 2.1%, respectively.

433 MHz Radio Frequency and 2G based Smart Irrigation Monitoring System (433 MHz 무선주파수와 2G 통신 기반의 스마트 관개 모니터링 시스템)

  • Manongi, Frank Andrew;Ahn, Sung-Hoon
    • Journal of Appropriate Technology
    • /
    • v.6 no.2
    • /
    • pp.136-145
    • /
    • 2020
  • Agriculture is the backbone of the economy of most developing countries. In these countries, agriculture or farming is mostly done manually with little integration of machinery, intelligent systems and data monitoring. Irrigation is an essential process that directly influences crop production. The fluctuating amount of rainfall per year has led to the adoption of irrigation systems in most farms. The absence of smart sensors, monitoring methods and control, has led to low harvests and draining water sources. In this research paper, we introduce a 433 MHz Radio Frequency and 2G based Smart Irrigation Meter System and a water prepayment system for rural areas of Tanzania with no reliable internet coverage. Specifically, Ngurudoto area in Arusha region where it will be used as a case study for data collection. The proposed system is hybrid, comprising of both weather data (evapotranspiration) and soil moisture data. The architecture of the system has on-site weather measurement controllers, soil moisture sensors buried on the ground, water flow sensors, a solenoid valve, and a prepayment system. To achieve high precision in linear and nonlinear regression and to improve classification and prediction, this work cascades a Dynamic Regression Algorithm and Naïve Bayes algorithm.

Surface soil moisture memory using stored precipitation fraction in the Korean peninsula (토양 내 저장 강수율을 활용한 국내 표층 토양수분 메모리 특성에 관한 연구)

  • Kim, Kiyoung;Lee, Seulchan;Lee, Yongjun;Yeon, Minho;Lee, Giha;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.2
    • /
    • pp.111-120
    • /
    • 2022
  • The concept of soil moisture memory was used as a method for quantifying the function of soil to control water flow, which evaluates the average residence time of precipitation. In order to characterize the soil moisture memory, a new measurement index called stored precipitation fraction (Fp(f)) was used by tracking the increments in soil moisture by the precipitation event. In this study, the temporal and spatial distribution of soil moisture memory was evaluated along with the slope and soil characteristics of the surface (0~5 cm) soil by using satellite- and model-based precipitation and soil moisture in the Korean peninsula, from 2019 to 2020. The spatial deviation of the soil moisture memory was large as the stored precipitation fraction in the soil decreased preferentially along the mountain range at the beginning (after 3 hours), and the deviation decreased overall after 24 hours. The stored precipitation fraction in the soil clearly decreased as the slope increased, and the effect of drainage of water in the soil according to the composition ratio of the soil particle size was also shown. In addition, average soil moisture contributed to the increase and decrease of hydraulic conductivity, and the rate of rainfall transfer to the depths affected the stored precipitation fraction. It is expected that the results of this study will greatly contribute in clarifying the relationship between soil moisture memory and surface characteristics (slope, soil characteristics) and understanding spatio-temporal variation of soil moisture.

A study on Digital Agriculture Data Curation Service Plan for Digital Agriculture

  • Lee, Hyunjo;Cho, Han-Jin;Chae, Cheol-Joo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.2
    • /
    • pp.171-177
    • /
    • 2022
  • In this paper, we propose a service method that can provide insight into multi-source agricultural data, way to cluster environmental factor which supports data analysis according to time flow, and curate crop environmental factors. The proposed curation service consists of four steps: collection, preprocessing, storage, and analysis. First, in the collection step, the service system collects and organizes multi-source agricultural data by using an OpenAPI-based web crawler. Second, in the preprocessing step, the system performs data smoothing to reduce the data measurement errors. Here, we adopt the smoothing method for each type of facility in consideration of the error rate according to facility characteristics such as greenhouses and open fields. Third, in the storage step, an agricultural data integration schema and Hadoop HDFS-based storage structure are proposed for large-scale agricultural data. Finally, in the analysis step, the service system performs DTW-based time series classification in consideration of the characteristics of agricultural digital data. Through the DTW-based classification, the accuracy of prediction results is improved by reflecting the characteristics of time series data without any loss. As a future work, we plan to implement the proposed service method and apply it to the smart farm greenhouse for testing and verification.

Shear-wave elasticity imaging with axial sub-Nyquist sampling (축방향 서브 나이퀴스트 샘플링 기반의 횡탄성 영상 기법)

  • Woojin Oh;Heechul Yoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.5
    • /
    • pp.403-411
    • /
    • 2023
  • Functional ultrasound imaging, such as elasticity imaging and micro-blood flow Doppler imaging, enhances diagnostic capability by providing useful mechanical and functional information about tissues. However, the implementation of functional ultrasound imaging poses limitations such as the storage of vast amounts of data in Radio Frequency (RF) data acquisition and processing. In this paper, we propose a sub-Nyquist approach that reduces the amount of acquired axial samples for efficient shear-wave elasticity imaging. The proposed method acquires data at a sampling rate one-third lower than the conventional Nyquist sampling rate and tracks shear-wave signals through RF signals reconstructed using band-pass filtering-based interpolation. In this approach, the RF signal is assumed to have a fractional bandwidth of 67 %. To validate the approach, we reconstruct the shear-wave velocity images using shear-wave tracking data obtained by conventional and proposed approaches, and compare the group velocity, contrast-to-noise ratio, and structural similarity index measurement. We qualitatively and quantitatively demonstrate the potential of sub-Nyquist sampling-based shear-wave elasticity imaging, indicating that our approach could be practically useful in three-dimensional shear-wave elasticity imaging, where a massive amount of ultrasound data is required.