• Title/Summary/Keyword: Flow field numerical analysis

Search Result 872, Processing Time 0.026 seconds

A study on the development of the velocity and temperature fields in a laminar flow through an eccentric annular ducts (偏心된 二重圓管의 環狀部를 지니는 層流流動에서의 連度場 및 溫度場의 確立에 대한 硏究)

  • 이택식;이상산
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.6
    • /
    • pp.861-869
    • /
    • 1986
  • A numerical study has been conducted on the development of the velocity and temperature fields in a laminar flow through an eccentric annular duct. A bipolar coordinates system is adopted, and a numerical program is developed to analyze 3-dimensional parabolic flow problems. In the analysis of the velocity field, the entrance length has been defined as the distance where the axial pressure gradient is greater than that of the developed velocity field by 5%. The dimensionless hydrodynamic entry length increases with increasing eccentricity. In the transverse flow fields, the reverse flow region along the wall due to the developing axial velocity near the entrance of the duct is found. In the analysis of the temperature field, the thermal entry length has been defined as the axial distance where the mean fluid temperature is 5% less than that of the developed temperature field. The dimensionless thermal entry length increases as eccentricity or Prandtl number increases. The overshoot of the mean Nusselt number over the developed value at the zero-temperature wall is encountered, and the rate of the overshoot increases with the increase of the eccentricity and Prandtl number.

A Numerical Analysis for Prediction of Flow Rate of the Motor Cooling Fan (전동기 냉각팬의 유량예측을 위한 수치해석)

  • Lee, Sang-Hwan;Kang, Tae-In;Ahn, Chel-O;Seo, In-Soo;Lee, Chang-Joon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.670-677
    • /
    • 2005
  • In this study, we analyzed the three dimensional unsteady flow field around the motor cooling fan using the unsteady lifting surface theory. We obtained the flow rate for various geometries of fan from the calculated results of velocity field. For the data of design parameter and rotating speed(rpm) of the fan, we can predict the flow rate of the motor cooling fan with thin thickness through numerical analysis without the experimental data of the free stream velocity which is a boundary condition of flow field. the numerical results showed the flow rate within 10% of error in comparison with experimental results. The radial fans, which are often used as internal motor fan were also investigated with the same procedure.

  • PDF

A Study on Numerical Modeling of Dynamic CPT using Particle Flow Code (입자결합모델을 이용한 동적콘관입시험(DCPT)의 수치해석 모델링에 관한 연구)

  • You, Kwang Ho;Lee, Chang Su;Choi, Jun Seong
    • International Journal of Highway Engineering
    • /
    • v.16 no.2
    • /
    • pp.43-52
    • /
    • 2014
  • PURPOSES : To solve problems in current compaction control DCPT(Dynamic Cone Penetrometer Test), highly correlated with various testing methods, simple, and economic is being applied. However, it、s hard to utilize DCPT results due to the few numerical analyses for DCPT have been performed and the lack of data accumulation. Therefore, this study tried to verify the validation of numerical modeling for DCPT by comparing and analyzing the results of numerical analyses with field tests. METHODS: The ground elastic modulus and PR(Penetration Rate) value were estimated by using PFC(Particle Flow Code) 3D program based on the discrete element method. Those values were compared and analyzed with the result of field tests. Also, back analysis was conducted to describe ground elastic modulus of field tests. RESULTS : Relative errors of PR value between the numerical analyses and field tests were calculated to be comparatively low. Also, the relationship between elastic modulus and PR value turned out to be similar. CONCLUSIONS : Numerical modeling of DCPT is considered to be suitable for describing field tests by carrying out numerical analysis using PFC 3D program.

A Numerical Study on the Flow Fields in the Continuous Casting Mold with Electromagnetic Brake (EMBR이 적용된 연속주조 몰드 내부에서의 유동장 해석)

  • Ha M. Y.;Lee H. G.
    • Journal of computational fluids engineering
    • /
    • v.4 no.2
    • /
    • pp.47-56
    • /
    • 1999
  • We developed a computer program to simulate the flow field in the presence of electro-magnetic fields. The steady, two-dimensional conservation equations for mass and momentum were solved simultaneously with Maxwell equations for electro-magnetic fields. Using this program, a numerical analysis was carried out to analyze the fluid flow in the continuous casting mold with electromagnetic brake. The effects of magnetic fields size, nozzle angle and EMBR yoke position on the flow fields in the continuous casting were investigated in the present study. The flow fields with EMBR were compared with those without EMBR. We also investigated the distribution of tracer concentration as a function of time in order to calculate their residence time in the mold with EMBR. By controlling the flow fields properly using EMBR, we can prevent the direct flow impaction on the wall which can give a damage on the mold surface and reduce surface defects of stainless steel sheet products.

  • PDF

Analysis of flow and heat transfer in internally finned tube (내부 핀이 부착된 열교환기의 유동장해석)

  • Jeong Ho-Eyoul;Jeong Jae-Tack;Ko Hyung-Jong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.139-144
    • /
    • 1999
  • There have been many studies for heat transfer enhancement. Particularly, the study of flow in heat exchangers which have fin device has been main theme in heat transfer area. Practically, the circular tube which has internal fins is widely used for developing heat transfer rate. In this study, flow and heat transfer analysis of the circular tube with fins are investigated. The height and the number of fins are arbitrary. The flow field is assumed to be laminar. The conformal mapping is used for analytic solution of the laminar flow field. Discretization of governing equation, namely, FDM was used for numerical analysis. The velocity field, flow rate and shear stress are calculated for some numbers of fins in circular tube and for some heights of fin. Temperature fields are plotted along the tube length. It can be shown that the numerical solution agrees with the analytical solution.

  • PDF

A Numerical Analysis for Two-phase Turbulent Flow in the Neutral Atmosphere (중립 대기 상태에서 이상 난류유동에 관한 수치적 연구)

  • Kang, Seung-Kyu;Yoon, Joon-Yong;Lee, Do-Hyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.6
    • /
    • pp.772-778
    • /
    • 2002
  • A numerical analysis of turbulent gas-particle two-phase flow is performed in conjunction with the experiments of Fackrell & Robins and Raupach & Legg that considered ground-level source and/or elevated source flat plate flow. K-$\omega$ turbulence model is used in order to analyze fully turbulent flow field and the concentration equation with settling velocity is adopted for the concentration field. The model of Einstein and Chien is applied that couples the velocity field and the concentration field. Turbulent eddy viscosity is re-evaluated in this model. The present numerical results have good agreement between the simulation and the experimental data for the mean flow velocities and particle concentrations. While the previous study shows about 27% error in the vicinity of the source of particle concentration, the .present study allows about 14% error. A new turbulent gas-particle flow model developed by this study is able to cut down error by 13% at a near source.

A Numerical Analysis on Flow Characteristic in a Standard Cyclone Dust Separator (표준 사이클론 집진기 내 유동특성에 관한 수치해석)

  • Lee, Chi-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.5
    • /
    • pp.97-103
    • /
    • 2011
  • This study is numerical analysis on flow characteristic in a standard cyclone dust separator. The cyclone dust separator is widely used in a industrial applications as a method for dust removed from gases. In cyclone chamber, a very complex flow field is formed, involving the interaction between highly swirling velocity and turbulent field. Numerical analysis with computational fluid dynamics(CFD) was carried out to investigate the working fluid that flow into cyclone dust separator. Helical entry type was increasing flow rate compared with tangent entry type. And according to increasing pressure difference was increased fan power. But, helical entry type was high performance dust separator, in comparison with tangent entry type.

Numerical Analysis on the Control of Particle-laden Flow Using Electromagnetic Field (전기자장에 의한 혼상류의 제어에 관한 수치해석)

  • NAM Seong-Won;KAMIYAMA Shin-icki
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1996.05a
    • /
    • pp.125-130
    • /
    • 1996
  • A numerical analysis is conducted on heat transfer and fluid flow of a plasma spraying process under the DC-RE hybrid electromagnetic field. Plasma flow is analyzed by using Eulerian approach and the equation of particle motion is simultaneously solved using a trajectory analysis with a lumped-heat-capacity model. Axisymmetric two dimensional electromagnetic fields governed by Maxwell's equations are solved based on a vector potential concept. The effects of the RF electromagnetic field on the temperature and velocity fields of the turbulent plasma flow are clarified. Control characteristics of phase changes and dispersed features of particles by applying the RF electromagnetic field are also clarified in an attempt to improve the plasma spraying process

  • PDF

3D Flow Analysis of Globe Valve with Air Operated Actuator (공기구동형 글로브 밸브의 3차원 유동 해석)

  • Chung, M. H.;Yang, S. M.;Lee, H. Y.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.4 s.31
    • /
    • pp.7-13
    • /
    • 2005
  • Although the globe is the most typical valve to control high pressure drop in piping system, it is very hard to figure out the characteristics of flow field in the globe valve caused by its complex geometry, So there is very few studies to find out flow characteristics of globe valve. In this study numerical analysis for flow field in the globe valve is carried out using the FLUENT code which is commercial CFD program. Pressure drop through the globe valve is also measured to verify the results come from numerical analysis. Comparing experiment with numerical analysis, two results are very close to each other.

NUMERICAL ANALYSIS OF TUNNEL FLOW INDUCED BY JET FAN (제트팬 운전에 의해 형성되는 터널내 유동에 대한 수치적 해석)

  • Kim, J.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.10-13
    • /
    • 2010
  • The flow field in road tunnel is influenced by some facts such as piston effect of vehicle's move, operation of ventilation facilities, natural wind and buoyancy effect of fire plume. Among those, jet fan is one of main ventilation facilities especially in longitudinal ventilation system of tunnel. In this study to analyze tunnel flow induced by operation of jet fan, numerical simulation has been carried out. The velocity distributions and streamlines in tunnel are examined to consider the three-dimensional characteristics of tunnel flow caused by jet fan.

  • PDF