• 제목/요약/키워드: Flow effect

검색결과 10,896건 처리시간 0.051초

비대면 수업 경험 간호대학생의 학습실재감이 학업성취도에 미치는 영향: 학습몰입의 매개효과와 디지털 리터러시의 조절된 매개효과 (Influence of Learning Presence of Non-Face-to-Face Class Experience in Nursing Students on Academic Achievement: Mediating Effect of Learning Flow and Moderated Mediation of Digital Literacy)

  • 류의정;장금성;김은아
    • 대한간호학회지
    • /
    • 제52권3호
    • /
    • pp.278-290
    • /
    • 2022
  • Purpose: This study aimed to identify the mediating effect of learning flow and the moderated mediation effect of digital literacy on the effect of the learning presence of non-face-to-face class experience in nursing students on academic achievement. Methods: Participants were 272 nursing students from six universities in two different cities. A self-report questionnaire was used to measure learning presence, learning flow, digital literacy, and academic achievement. Analysis was performed using SPSS 26.0 and SPSS PROCESS Macro (4.0). Results: The mediating effect of learning flow on the effect of learning presence on academic achievement was 0.42, and the moderated mediation index of digital literacy was 0.17. Learning flow showed a mediating effect on the relationship between learning presence and academic achievement. Digital literacy had a moderated mediation effect on the relationship between learning presence and academic achievement that was mediated by learning flow. Conclusion: The intensity of the mediating effect of nursing students' learning presence on academic achievement through learning flow increases as the level of digital literacy increases. These results suggest that educational programs considering the level of learning presence, learning flow, and digital literacy are required to promote the academic achievement of nursing college students.

냉각수의 유동속도와 온도가 담금효과에 미치는 영향 (The influence of flow rate and temperature on the quenching effect of cooling water)

  • 민수홍;김상열
    • 오토저널
    • /
    • 제4권3호
    • /
    • pp.24-39
    • /
    • 1982
  • It has already been known that quenching effect is influenced greatly by stirring and changing coolant's temperature on quenching. But according to the past investigations its effect has not been taken into consideration quantitatively in the cooling process. The purpose of this study is that the influence of flow rate and temperature on the quenching effect of cooling water as quenching medium is quantitatively examined by using the open channel. The stream of water in this study is turbulent flow. The temperature of the specimen made of pure copper is measured by CA thermocouple in the vicinity of the surface and recorded by an automatic recorder during the quenching process in city water. The results obtained are as follows; 1. The quenching effect of cooling water generally increases with Reynolds Number(characteristic length; specimen diameter)as shown in the experimental formula; but at the realm of Reynolds Number from 1.2 * 10$^{4}$ to 9.2 * 10$^{4}$, the increasing rate of quenching effect shows little increase. 2. The increasing rate of quenching effect was increased under the flow rate of 221 cm/sec. On the other hand, it was decreased below this flow rate. 3. The quenching effect was influenced by the water temperature and the flow rate. But it was rather dependent upon the former than the latter. 4. Although the quenching effect appeared loosely in the water temperature of 50.deg. C, it was shown that the quenching effect increased in the low flow rate of 31 cm/sec. comparing with the still water. 5. It is desirable to design the quenching system to be over 1.2 * 10$^{4}$ in Reynolds Number or over, 3000$cm^{-1}$ / in V/v in order to increase the quenching effect of the system using open channel.annel.

  • PDF

유동응력, 마찰, 온도, 속도 등이 단조 중 단류선의 유한요소예측에 미치는 영향 (Effect of Flow Stress, Friction, Temperature, and Velocity on Finite Element Predictions of Metal Flow Lines in Forgings)

  • 최무호;진호태;전만수
    • 소성∙가공
    • /
    • 제24권4호
    • /
    • pp.227-233
    • /
    • 2015
  • In this paper, the effect of flow stress, friction, temperature, and velocity on finite element predictions of metal flow lines after cylindrical upsetting is presented. An actual three-stage hot forging process involving an upsetting step is utilized and experimental metal flow lines are measured to study the effect of the various process variables. It was found that temperature and velocity for reasonable values of friction have little influence on metal flow lines especially those located deep within the cylinder but that flow stress has a direct influence on the flow lines. It was shown that a pure power law material model cannot reflect the real flow stress of hot material because it underestimates the flow stress especially around the dead-metal zone for the upsetting of a cylindrical specimen. It is thus recommended that a proper lower limit of flow stress be assumed to alleviate this issue.

스마트폰 기반 증강현실 특성이 프레즌스, 플로우 및 관계지속행동에 미치는 영향 (The Effect of Augmented Reality Traits on Presence, Flow, and Relational Continuance Behavior with Smart-Phones)

  • 전태유;박노현
    • 유통과학연구
    • /
    • 제13권5호
    • /
    • pp.45-52
    • /
    • 2015
  • Purpose - Augmented reality (AR) content used in mobile media today can accommodate a wide variety of contextual information. This indicates that making people experience a sense of presence and flow is a very significant factor in augmented reality content. Flow represents a rich immersion potential as representing the progress of emotion and the means to facilitate the operation of the smart phone. Therefore, users will have friendly relational continuance behavior with products and brands that supply this experience. Based on that, the purpose of this study is to investigate the relationships among smart phone AR application traits, presence, flow experience, and relational continuance behavior. First, AR application traits are defined as three categories sensory immersion, navigation, and manipulation, based on preceding studies. This study then examines the influence of AR application traits on the presence and flow experience and looks into the relation among presence, flow experience, and relational continuance behavior. This analysis suggests more detailed and concentrated strategic implications. Research design, data, and methodology - A research model is designed to examine the relation among AR application traits, presence, flow experience, and relational continued behavior. For data collection, questionnaire surveys were composed of multi-items for each component and the direct interview method was used for the interviews. To collect the data, after running the smart phone AR applications, the consumer behaviors of the respondents were generally determined. The questionnaire surveys were conducted for one month, October 2014. A total of 300 questionnaires were distributed with 278 questionnaires used for analysis, excluding the unanswered and insincere questionnaires. The data were analyzed using SPSS ver. 20.0 and LISREL ver. 8.51. Results - The following results are found: First, AR application traits have a significantly positive effect on presence with sensory immersion, navigation, and manipulation all having a significantly positive effect. Second, sensory immersion and manipulation among the AR application traits have a significantly positive effect on flow. However, navigation did not have a significantly positive effect on flow. Third, presence has a significantly positive effect on flow and has a significantly positive effect on relational continuance behavior. Moreover, flow also has a significantly positive effect on relational continuance behavior. This behavior tends to be formed since brands want to encourage relational continuance behavior and positive emotions with the brands being used. Relational continuance behavior accompanies repeat purchasing, positive word-of-mouth and recommendation activities, and forms of trust with the brand. Conclusions - The research results showed that smart phone AR traits had significantly positive effect on presence, flow, and relational continuance behavior. Based on this, smart phone AR application providers should establish an aggressive marketing strategy to accommodate more realistic problems in order to positively influence user behavior. Additionally, the marketers should make efforts to provide fun or convenience in the AR application operation process of the user.

TOUGH2를 이용한 폐쇄형 지열펌프 시스템의 3차원 모델링 연구 (3 Dimensional Numerical Simulation for the Closed Loop Heat Pump System Using TOUGH2)

  • 김성균;배광옥;이강근
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.36-39
    • /
    • 2006
  • To evaluate the effect of groundwater flow on the outlet temperature of a geothermal heat pump, 3 dimensional numerical simulations are performed considering both groundwater flow and pipe flow in the U-tube using TOUGHS, The present study involved the following 4 simulation cases (1) no groundwater flow, (2) slow groundwater flow (hydraulic conductivity: $1.0{\times}10^{-9}m/s)$, (3) fast groundwater flow (hydraulic conductivity, $1.0{\times}10^{-7}m/s$), and (4) groundwater flow varying with the depth (hydraulic conductivity: $1.0{\times}10^{-7}-1.0{\times}10^{-10}m/s$). The effect of groundwater flow on the outlet temperature is significant where hydraulic conductivity of aquifer is $1.0{\times}10^{-7}m/s$. Where hydraulic conductivity of aquifer is $1.0{\times}10^{-10}m/s$, however, that effect is negligible.

  • PDF

Effect of Blade Angle on the Performance of a Cross-Flow Hydro Turbine

  • Choi, Young-Do;Lim, Jae-Ik;Kim, You-Taek;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권3호
    • /
    • pp.413-420
    • /
    • 2008
  • In order to improve the performance of cross-flow hydro turbine, detailed examination of the effect of the turbine configuration on the performance is needed necessarily. Therefore, this study is aimed to investigate the effect of blade angle on the performance of the cross-flow hydro turbine. Analysis of the turbine performance with the variation of the blade angle has been made by using a commercial CFD code. The results show that inlet and outlet angles of runner blade give considerable effect on the performance of the turbine. Pressure on the surface of the runner blade changes remarkably by the blade angle both at the Stages 1 and 2. Moreover, relatively small blade inlet angle is effective to produce higher value of output power. Recirculating flow in the runner passage causes remarkable hydraulic loss.

Reynolds Number Effect on Regenerative Pump Performance in Low Reynolds Number Range

  • Horiguchi, Hironori;Yumiba, Daisuke;Tsujimoto, Yoshinobu;Sakagami, Masaaki;Tanaka, Shigeo
    • International Journal of Fluid Machinery and Systems
    • /
    • 제1권1호
    • /
    • pp.101-108
    • /
    • 2008
  • The effect of Reynolds number on the performance of a regenerative pump was examined in a low Reynolds number range in experiment. The head of the regenerative pump increased at low flow rates and decreased at high flow rates as the Reynolds number decreased. The computation of the internal flow was made to clarify the cause of the Reynolds number effect. At low flow rates, the head is decreased with increasing the Reynolds number due to the decrease of the shear force exerted by the impeller caused by the increase of leakage and hence local flow rate. At higher flow rates, the head is increased with increasing the Reynolds number with decreased loss at the inlet and outlet as well as the decreased shear stress on the casing wall.

Shape Effect of Inlet Nozzle and Draft Tube on the Performance and Internal Flow of Cross-Flow Hydro Turbine

  • Choi, Young-Do;Son, Sung-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권3호
    • /
    • pp.351-357
    • /
    • 2012
  • Small hydropower is a reliable energy technology to be considered for providing clean electricity generation. Producing electrical energy by small hydropower is the most efficient contribution to renewable energy. Cross-flow turbine is adopted primarily because of its simple structure and high possibility of applying to small hydropower. The purpose of this study is to investigate the effect of inlet nozzle shape on the performance and internal flow of a cross-flow turbine for small hydropower by CFD analysis. Moreover, the shape effect of draft tube has been investigated according to modified shapes of the length and the diffuse angle. The results show that relatively narrow and converging inlet nozzle shape gives better effect on the performance of the turbine.

간편결제 서비스의 지속사용의도에 영향을 미치는 요인에 관한 연구: 플로우, 신뢰 및 혁신저항을 중심으로 (A Study on the Factors of Intention of Continued Use of the Convenient Payment Service: The Perspectives of the Flow, the Reliability and the Innovative Resistance)

  • 손달호
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제30권1호
    • /
    • pp.1-20
    • /
    • 2021
  • Purpose The purpose of this study is to deduct the motivative factors such as perceived value, trust, innovative resistance and flow from the pervious studies and to examine the effect of the motivative factors in the continued use of convenient payment service. Design/methodology/approach This study made a design of the research model by integrating the factors deducted from the Value-based Adoption Model and the Innovative Resistance Model with the factors deducted from the Flow Theory. Findings Results showed that perceived value had a significant effect on trust and innovative resistance. Moreover, trust had a significant effect on flow and continued use. Finally, innovative resistance and flow had a significant effect on continued use. However, the research model in this study was derived from a behavioral point of view, therefore, this model needs to combine the various factors of related fields.

제트확산화염 소화농도의 비정상 유동효과 (Unsteady Flow Effects on Extinguishing Concentrations in Jet Diffusion Flames)

  • 지정훈;오창보;이의주
    • 한국안전학회지
    • /
    • 제24권6호
    • /
    • pp.27-31
    • /
    • 2009
  • An experimental study on the unsteady effect of the extinction limit was performed in ethene jet diffusion flames. To impose the unsteadiness on jet flames, the amplitude and frequency of a co-flow velocity was varied, and the two inert gases, $N_2$ and $CO_2$, were used to dilute the oxidizer for extinguishing concentration. The experimental results shows that large amplitude of velocity induces a low extinguishing concentration, which implies that flow variation affects the blow out mechanism. Also, the flow oscillation effects under high frequency attenuates the flame extinction. These results means that flow unsteadiness extends the extinction limit and finally minimum extinction concentration by inert gases. When the Stoke's 2nd Problem is introduced to explain the flow unsteadiness on extinction concentration, the solution predicts the effect of amplitude and frequency of velocity well, and hence it is concluded the effect of low frequency velocity excitation was attributed only to flow effect.