• Title/Summary/Keyword: Flow control device

Search Result 408, Processing Time 0.021 seconds

PID control of left ventricular assist device (PID 제어기를 이용한 좌심실보조장치의 제어)

  • Jeong, Seong-Taek;Kim, Hun-Mo;Kim, Sang-Hyeon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.3
    • /
    • pp.315-320
    • /
    • 1998
  • In this paper, we present the PID control method for the controlling flow rate of highly complicated nonlinear Left Ventricular Assist Device(LVAD) with pneumatically driven mock circulatory system. Beat Rate (BR), Systole-Diastole Rate (SDR) and flow rate are used as the main variables of the LVAD system. System modeling is completed using the neural network with input variables (BR, SDR, their derivatives, actual flow) and an output valiable(actual flow). Then, as the basis of this model, we perform the simulation of PID control to predict the performance and tendency of the system and control the flow rate of LVAD system using the PID controller. The ability and effectiveness of identifying and controlling a LVAD system using the proposed algorithm will be demonstrated through computer simulation and experiments.

  • PDF

A Numerical Study on the Control of the Gap Flow Using a Fluid Supply Device (유체 공급장치를 활용한 간극유동 제어에 관한 수치적 연구)

  • Seo, Dae-Won;Oh, Jung-Keun;Lee, Seung-Hee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.6
    • /
    • pp.578-586
    • /
    • 2009
  • Recently, horn-type rudders are generally being used at high speed container ships and are frequently suffering from the cavitation occurs on the rudder surface in the vicinity of the gap between the horn and rudder plate. In the present study, a fluid supplying device is employed as to decrease the gap cavitation of the horn-type rudder. The device is devised to inject the water against the pressure side through the nozzle installed inside of the gap to control the gap flow. Numerical calculations are performed to investigate the effectiveness of the device and the results show that the device can noticeably reduce the gap cavitation. The rates of water injection for achievement of the maximum retardations of gap flow are also sought.

Development and Evaluation of Differential Pressure Type Mass Flow Controller for Semiconductor Fabrication Processing (반도체 공정용 차압식 질량 유량 제어 장치의 개발 및 성능 평가)

  • Ahn, Jin-Hong;Kang, Ki-Tai;Ahn, Kang-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.3
    • /
    • pp.29-34
    • /
    • 2008
  • This paper describes the fabrication and characterization of a differential pressure type integrated mass-flow controller made of stainless steel for reactive and corrosive gases. The fabricated mass-flow controller is composed of a normally closed valve and differential pressure sensor. A stacked solenoid actuator mounted on a base-block is utilized for precise and rapid control of gas flow. The differential pressure flow sensor consisting of four diaphragms can detect a flow rate by deflection of diaphragm. By a feedback control from the flow sensor to the valve actuator, it is possible to keep the flow rate constant. This device shows a fast response less than 0.3 sec. Also, this device shows accuracy less than 0.1% of full scale. It is confirmed that this device is not attacked by toxic gas, so the integrated mass-flow controller can be applied to advanced semiconductor processes which need fine mass-flow control corrosive gases with fast response.

  • PDF

Control of Left Ventricular Assist Device Using Neural Network Feedforward Controller (인공신경망 Feedforward 제어기를 이용한 좌심실 보조장치의 제어실험)

  • 정성택;김훈모;김상현
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.4
    • /
    • pp.83-90
    • /
    • 1998
  • In this paper, we present neural network for control of Left Ventricular Assist Device(LVAD) system with a pneumatically driven mock circulation system. Beat rate(BR), Systole-Diastole Rate(SDR) and flow rate are collected as the main variables of the LVAD system. System modeling is completed using the neural network with input variables(BR, SBR, their derivatives, actual flow) and output variable(actual flow). It is necessary to apply high perfomance control techniques, since the LVAD system represent nonlinear and time-varing characteristics. Fortunately. the neural network can be applied to control of a nonlinear dynamic system by learning capability In this study, we identify the LVAD system with neural network and control the LVAD system by PID controller and neural network feedforward controller. The ability and effectiveness of controlling the LVAD system using the proposed algorithm will be demonstrated by experiment.

  • PDF

Measurement of Gas Concentration and flow Rate Using Hot Wire (열선을 이용한 혼합기체의 농도와 유량의 측정)

  • Kim, Young-Han;Park, Jong-Jueng
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.5
    • /
    • pp.407-412
    • /
    • 2002
  • A measurement device for gas concentration and flow rate using hot wire is developed for the utilization in industrial applications. The device has two cells of measuring and reference, and a bridge circuit is installed to detect electric current through the hot wire in the cells. An amplification of the signal and conversion to digital output are conducted for the on-line measurement with a personal computer. The flow rate of air and carbon dioxide gas is separately measured for the performance examination of the device. Also, the concentration of air-carbon dioxide and carbon dioxide-argon mixtures is determined for the same evaluation. The outcome of the performance test indicates that the accuracy and stability of the device is satisfactory for the purpose of industrial applications.

A Study on the Characteristics of Two-Step-Flow-Control Fluidic Device (2단 유량제어 Fluidic Device의 특성에 관한 연구)

  • Cho, Bong-Hyun;Bae, Yoon-Yeong;Park, Jong-Kyun;Yoo, Seong-Yeon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.4 no.3 s.12
    • /
    • pp.53-61
    • /
    • 2001
  • Vortex type Fluidic Device(FD) which is installed at the bottom of Safety Injection Tank(SIT) controls the discharge flow rate from the tank. In case of loss of coolant accident the injection water flows into primary system in two steps; initial high flow rate for certain period of time and subsequent low flow rate. By two-step control of the discharge flow rate, FD can ensure the effective use of water in the tank. A small-scale FD has been tested to obtain a required flow characteristics maintaining full pressure and height of prototype, which are the major contributing parameters. Through the testing of many different arrangements of internal geometry of FD, most appropriate one was selected and its performance data was obtained. As characteristics of FD, time dependent Euler number, flow rate and pressure are presented and discussed. Also a method to predict the full size FD is presented.

  • PDF

An Experiment on the Flow Control Characteristics of a Passive Fluidic Device (피동적 유체기구의 유동 조절 특성에 관한 실험)

  • Seo, Jeong-Sik;Song, Chul-Hwa;Cho, Seok;Chung, Moon-Ki;Choi, Young-Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.3
    • /
    • pp.338-345
    • /
    • 2000
  • A model testing has been performed to investigate the flow characteristics of a vortex chamber, which plays a role of a flow switch and passively controls the discharge flow rate. This method of passive flow control is a matter of concern in the design of advanced nuclear reactor systems as an alternative to the active flow control to provide emergency water to the reactor core in case of postulated accidents like LOCA (Loss-Of-Coolant Accident). By changing the inflow direction in the vortex chamber and varying the flow resistance inside the chamber, the vortex chamber can control passively the injection flowrate. Fundamental characteristics such as discharge flow rate and pressure drop of the vortex chamber are measured, and its parametric effects on the performance of the vortex chamber are also systematically investigated.

Development of A New Device for Controlling Infinitesimal Flows inside a Lab-On-A-Chip and Its Practical Application (랩온어칩 내부 미세유동 제어를 위한 새로운 장치의 개발 및 적용)

  • Kim, Bo-Ram;Kim, Guk-Bae;Lee, Sang-Joon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.305-308
    • /
    • 2006
  • For controlling micro-flows inside a LOC (lab-on-a-chip) a syringe pump or an electronic device for EOF(electro-osmotic flow) have been used in general. However, these devices are so large and heavy that they are burdensome in the development of a portable micro-TAS (total analysis system). In this study, a new flow control system employing pressure chambers, digital switches and speed controllers was developed. This system could effectively control the micro-scale flows inside a LOC without any mechanical actuators or electronic devices We also checked the feasibility of this new control system by applying it to a LOC of micro-mixer type. Performance tests show that the developed control system has very good performance. Because the flow rate in LOC is controlled easily by throttling the speed controller, the flows in complicate microchannels network can be also controlled precisely.

  • PDF

Micro Cell Counter Using a Fixed Control Volume Between Double Electrical Sensing Zones (다수의 계수구역간의 검사체적을 이용한 소형 세포농도센서)

  • Lee Dong Woo;Yi Soyeon;Cho Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.12 s.243
    • /
    • pp.1615-1620
    • /
    • 2005
  • We present a novel flow-rate independent cell counter using a fixed control volume between double electrical sensing zones. The previous device based on the single electrical cell sensing in a given flow-rate requires an accurate fluid volume measurement or precision flow rate control. The present cell counter, however, offers the flow-rate independent method for the cell concentration measurement with counting cells in a fixed control volume of $22.9{\pm}0.98{\mu}{\ell}$. In the experimental study, using the RBC (Red Blood Cell), we have compared the measured RBC concentrations from the fabricated devices with those from Hemacytometer. The previous and present devices show the maximum errors of $20.3\%\;and\;16.1\%$, which are in the measurement error range of Hemacytometer (about $20\%$). The present device also shows the flow-rate independent performance at the constant flow-rates ($5{\mu}{\ell}/min$ and $10{\mu}{\ell}/min$) and the varying flow-rate (4, 2, and $4{\mu}{\ell}/min$). Therefore, we demonstrate that the present cell counter is a simple and automated method for the cell concentration measurement without requiring an accurate fluid measurement and precision flow-rate control.

Driving Characteristics of Pneumatic Cylinder with Relief Valve Cushion Devices (릴리프밸브 쿠션기구 내장형 공기압 실린더의 구동 특성)

  • Kim, Do Tae
    • Journal of Drive and Control
    • /
    • v.13 no.4
    • /
    • pp.7-13
    • /
    • 2016
  • This paper presents the meter-out and meter-in speed control characteristics of a pneumatic cylinder with relief valve type cushion device. The piston displacement and velocity are measured to investigate high speed driving performance with variation of the pressure setting in relief valve, air supply pressure, load mass, the supply and exhaust flow rate from the cylinder. Also, the internal pressures and temperatures driving pressure and cushion chamber are measured. The piston displacements and velocities of meter-out and meter-in control are compared experimentally determined data. A comparison experimental data meter-out and meter-in control show that a relief valve type cushion device is suitable for high speed pneumatic cylinders. The desired response characteristics of piston displacement and velocity are satisfactory adjust the pressure setting of a relief valve with varying system parameters such as air supply pressure, load mass and controlled flow rate.