• Title/Summary/Keyword: Flow configuration

Search Result 1,146, Processing Time 0.03 seconds

A Convergent Study on Flow According to the Configuration of Small Car Muffler (소형 자동차의 머플러 형상에 따른 유동에 관한 융합 연구)

  • Choi, Kye-Kwang;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.1
    • /
    • pp.171-176
    • /
    • 2021
  • The flow analysis by each configuration of automotive muffler in this study was carried out. And it aims at finding the design model that can increase the flow property best. It is shown that model B has the lowest maximum pressure and model C has the largest. Compared with the best flow rate according to the shape of the automotive muffler, model A had the comparatively smooth flow stream at the entrance and exit. However, model B has the largest flow rate in the muffler but the least flow rate in the exit, making it look less efficient. By the flow analysis result according to the muffler configuration, it is thought to design the muffler effectively by looking for the model with more smooth flow. The result of this study can be used to investigate the flow according to the configuration of small car muffler without actual test. It also seems to be helpful in the aesthetic convergent design of small car muffler.

A study on the acoustic scalings of cavitation noise in an orifice configuration and a constant flow control valve (오리피스 구조내에서 발생한 공동소음의 음향학적 스케일링에 관한 연구)

  • Lee, J. H.;Lee, S.;Yoo, S. H.
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.81-89
    • /
    • 1999
  • The major source of noise in the process of transporting liquids is related to the cavitation phenomenon. The control valve noise is mostly dominated by bubble dynamics under cavitating conditions. In this investigation, an orifice configuration is set-up to correlate its flow-field and acoustic signatures with those from a control valve device. The performance and noise characteristics form the orifice configuration in anechoic surroundings were measured to reveal the noise sources depending on pressure differences across the orifice configuration. The sound powers from the orifice configuration are effectively normalized using proposed scaling parameters. Flow-excited dynamic systems for which there is no strong coupling between the flow and the system response can be described using a linear source-filter model. On this assumption, the normalized sound powers can be decomposed of noise source function and a response function. To find noise sources, pressure spectra measured over a range of pressure differences are transformed into the product of two non-dimensional frequency function : $P_{ss}(He,f_{ca},x/D) = F(f_{ca})\;G(He,x/D)$. This scheme of finding noise sources is shown to be applicable to the cavitation noise from the control valve effectively Two kinds of cavitating modes based on our experimental data are found and discussed.

  • PDF

A new insight into design of acoustic liner arrays arrangement in the presence of a grazing flow

  • Hadi Dastourani ;Iman Bahman-Jahromi
    • Advances in Computational Design
    • /
    • v.8 no.4
    • /
    • pp.273-293
    • /
    • 2023
  • This study evaluated the acoustic performance of two configurations of serial HR arrays and lined HR arrays in the presence of grazing flow using a 3D numerical simulation. The dual, triple, and quad HR arrays were compared to the conventional HR array. The simulation results showed that the number of resonant frequencies increased with the number of serial HR arrays. The CTL did not significantly change with the number of serial HR arrays. The acoustic performance of the two, three, and four-lined HR arrays was compared to the conventional HR array. The results showed that the resonant frequency and TLmax increased with the number of lined HR arrays. The CTL also increased with the number of lined HR arrays. The effect of the grazing flow Mach number (Ma) was investigated on the four-lined HR array configuration and compared to the conventional HR configuration. TLmax and CTL decreased for both configurations with increasing Ma. The four-lined HR array configuration had significantly better acoustic performance than the conventional HR configuration. The TLmax and CTL increased by more than 300% when the configuration was changed from the conventional HR to the four-lined HR array at Ma = 0.The increment percentage decreased with increasing Ma.

DEVELOPMENT OF AERODYNAMIC SHAPE OPTIMIZATION TOOLS FOR MULTIPLE-BODY AIRCRAFT GEOMETRIES OVER TRANSONIC TURBULENT FLow REGIME (천음속 난류 유동장에서의 다중체 항공기 형상의 공력 설계 도구의 개발)

  • Lee, B.J.;Lee, J.S.;Yim, J.W.;Kim, Chong-Am
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.100-110
    • /
    • 2007
  • A new design approach for a delicate treatment of complex geometries such as a wing/body configuration is arranged using overset mesh technique under large scale computing environment for turbulent viscous flow. Various pre- and post-processing techniques which are required of overset flow analysis and sensitivity analysis codes are discussed for design optimization problems based on gradient based optimization method (GBOM). The overset flow analysis code is validated by comparing with the experimental data of a wing/body configuration (DLR-F4) from the 1st Drag Prediction Workshop (DPW-I). In order to examine the applicability of the present design tools, careful design works for the drag minimization problem of a wing/body configuration are carried out by using the developed aerodynamic shape optimization tools for the viscous flow over multiple-body aircraft geometries.

  • PDF

Effects of 3D contraction on pebble flow uniformity and stagnation in pebble beds

  • Wu, Mengqi;Gui, Nan;Yang, Xingtuan;Tu, Jiyuan;Jiang, Shengyao
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1416-1428
    • /
    • 2021
  • Pebble flow characteristics can be significantly affected by the configuration of pebble bed, especially for HTGR pebble beds. How to achieve a desired uniform flow pattern without stagnation is the top priority for reactor design. Pebbles flows inside some specially designed pebble bed with arc-shaped contraction configurations at the bottom, including both concave-inward and convex-outward shapes are explored based on discrete element method. Flow characteristics including pebble retention, residence-time frequency density, flow uniformity as well as axial velocity are investigated. The results show that the traditionally designed pebble bed with cone-shape bottom is not the most preferred structure with respect to flow pattern for reactor design. By improving the contraction configuration, the flow performance can be significantly enhanced. The flow in the convex-shape configuration featured by uniformity, consistency and less stagnation, is much more desirable for pebble bed design. In contrast, when the shape is from convex-forward to concave-inward, the flow shows more nonuniformity and stagnation in the corner although the average cross-section axial velocity is the largest due to the dominant middle pebbles.

A Study on the Configuration of BOP and Implementation of BMS Function for VRFB (VRFB를 위한 BOP 구성 및 BMS 기능구현에 관한 연구)

  • Choi, Jung-Sik;Oh, Seung-Yeol;Chung, Dong-Hwa;Park, Byung-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.12
    • /
    • pp.74-83
    • /
    • 2014
  • This paper proposes a study on the configuration of balancing of plant(BOP) and implementation of battery management system(BMS) functions for vanadium redox flow battery(VRFB) and propose a method consists of sensor and required design specifications BOP system configuration. And it proposes an method of the functions implementation and control algorithm of the BMS for flow battery. Functions of BMS include temperature control, the charge and discharge control, flow control, level control, state of charge(SOC) estimation and a battery protection through the sensor signal of BOP. Functions of BMS is implemented by the sensor signal, so it is recognized as a very important factor measurement accuracy of the data. Therefore, measuring a mechanical signal(flow rate, temperature, level) through the BOP test model, and the measuring an electrical signal(cell voltage, stack voltage and stack current) through the VRFB charge-discharge system and analyzes the precision of data in this paper. Also it shows a good charge-discharge test results by the SOC estimation algorithm of VRFB. Proposed BOP configuration and BMS functions implementation can be used as a reference indicator for VRFB system design.

A Study on the Characteristics of Swirl Flow in Transparent Engine with Different Swirl Ratio and Piston Configuration for Heavy-duty LPG Engine (대형 LPG엔진용 피스톤 형상 및 흡기포트 선회비 최적화를 위한 가시화엔진내 스월유동특성 해석)

  • Lee, Jin-Wook;Kang, Kern-Yong;Min, Kyoung-Doug
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.1
    • /
    • pp.59-65
    • /
    • 2004
  • The configuration of intake port and piston is a dominant factor of inlet air flow and mixture formation in an engine cylinder, resepectively. This study has analyzed intake port and piston characteristics for swirl flow of a heavy-duty LPG engine. As an available technology to optimize intake port, the steady flow rig test has been applied for measuring swirl ratio and mean flow coefficient. And we measured the mean velocity and turbulence intensity of swirl flow under motoring condition in transparent engine cylinder by backward scattering LDV system. From these results, the piston and cylinder head with a good evaluated swirl flow characteristics were developed and adapted fur a 11L heavy-duty engine using the liquid phase LPG injection (LPLI) system. The obtained results are expected to be a fundamental data for developing intake port and piston.

A Study on the Aerodynamic Characteristics of a Joined-wing Aircraft with Variation of Wing Configurations

  • Kidong Kim;Jisung Jang
    • International Journal of Aerospace System Engineering
    • /
    • v.10 no.1
    • /
    • pp.1-13
    • /
    • 2023
  • The present study was attempted to investigate flow interference effects and the aerodynamic characteristics of the front and rear wings of a joined-wing aircraft by changing the configuration variables. The study was performed using a computational fluid dynamics(CFD) tool to demonstrate forward flight and analyze aerodynamic characteristics. A total of 9 configurations were analyzed with variations on the position, height, dihedral angle, incidence angle, twist angle, sweepback angle, and wing area ratio of the front and rear wings while the fuselage was fixed. The quantities of aerodynamic coefficients were confirmed in accordance with joined-wing configurations. The closer the front and rear wings were located, the greater the flow interference effects tended. Interestingly, the rear wing did not any configuration change, the lift coefficient of the rear wing was decreased when adjusted to increase the incidence angle of the front wing. The phenomenon was appeared due to an effective angle of attack alteration of the rear wing resulting from the flow interference by the front wing configurations.

Could There Be a Unified Spectral Model for Black Holes and Neutron Stars?

  • Bhattacharjee, Ayan;Chakrabarti, Sandip K.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.64.1-64.1
    • /
    • 2021
  • Accretion flows around black holes and neutron stars emit high energy radiation with varying spectral and timing properties. Observed timing variations, both short and long-term, point to the existence of a mechanism, dictated by the flow dynamics, and not by the stellar surface or magnetic fields, that is common in both. Spectral energy distributions of multiple sources indicate that the Comptonization process, the dominant mechanism for changing states in X-ray, takes place inside the flow that has similar physical properties in both the objects. In a series of observational and numerical studies, we enquire about the following: 1. Is there a steady state configuration for accreting matter around black holes that can explain spectral and timing properties? 2. Could a similar formalism explain spectral and timing properties of accretion around neutron stars? 3. Could there be a generalized flow configuration for accreting matter around such compact objects? Furthermore, we show that a unified spectral model can be constructed based on the generalized flow configuration, common to black holes and neutron stars.

  • PDF

Configuration models for technology transfer from universities and research institutes to industries (대학 및 연구소와 산업계간 기술이전시스템의 구성 모델)

  • 문병근;조규갑
    • Proceedings of the Technology Innovation Conference
    • /
    • 2001.06a
    • /
    • pp.133-143
    • /
    • 2001
  • Technology transfer from universities and research institutes to industries is recognized as a critical issue to strengthen industrial competitiveness, and the roles of technology transfer intermediaries are becoming one of the most important factors for successful technology transfer In today's global and knowledge-based economies, technology transfer services are started shifting to Internet and vertical transfer of technology from R&D labs to industries is becoming more emphasized than horizontal company-to-company transfer of commercialized technology. And the need of comprehensive technology transfer services necessitates cooperation among technology transfer intermediaries and networks offering complementary services. In order to respond to these changes, it is required to construct a new type of technology transfer system. But there are few researches on technology transfer system configuration for design and realization of technology transfer intermediaries. This paper presents the configuration models of technology transfer from universities and research institutes to industries. The configuration models are classified and described from the viewpoint of flows of information, technology and knowledge.

  • PDF