• Title/Summary/Keyword: Flow characteristics analysis

Search Result 4,750, Processing Time 0.032 seconds

Flow Rate Characteristics of Two Parallel Pumping System (두 대의 펌프가 병렬로 설치되는 계통에서의 유량 특성)

  • Park, Y.C.;Chi, D.Y.;Seo, K.W.;Yoon, H.G.;Park, J.G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.579-586
    • /
    • 2011
  • During a reactor normal operation, a primary coolant was designed to remove the fission reaction heat of the reactor. When one pump is failure and the other pump shall supply the cooling water to cool the reduced power, it is necessary to estimate how much flow will be supplied to cool the reactor. We carried a flow net work analysis for two parallel pumping system as based on the piping net work of the primary cooling system in HANARO. As result, it is estimated that the flow of one pump increased than the rated flow of the pump below the cavitation critical flow.

  • PDF

DESIGN OPTIMIZATION OF AN INDUSTRIAL 3/2 WAY PNEUMATIC VALVE CONSIDERING FLOW-STRUCTURE CHARACTERISTICS (3/2 WAY 공압밸브의 유동-구조적 특성을 고려한 최적설계)

  • Yang, S.M.;Baek, S.H.;Kim, T.W.;Jung, I.S.;Kang, S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.605-607
    • /
    • 2011
  • A Study on the flow-structure characteristics of a 3/2 way pneumatic valve is essential for optimizing the performance of ship engines. It is important for the valve to have desirable safety factor am reduced weight from the safety and economic point of view. In this study, we capture flow-structure characteristics of 3/2 way pneumatic valve. This is optimized based on the proper design criteria. The air at a pressure of 30 bar is the working fluid which is made to fill in the tack in short time. This time is defined as the filling time. The flow and structure analysis is performed for three cases under maximum stress and safety factor. In optimum design, considering the flow-structure characteristics, we model twenty seven cases by using DOE(design of experiments) method Here, analysis for each cases is performed and then metamodels are created We obtain optimized parameters and then analysis is repeated to compare with the initial model. Finally, the feasibility of the optimum design is verified.

  • PDF

A Study on the Numerical Analysis of Internal Flow in a Cone Type Valve (Cone Type 밸브 내부유동 수치해석에 관한 연구)

  • Chin, Do-Hun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_2
    • /
    • pp.199-207
    • /
    • 2020
  • These days, many different types of valves are developed in the industrial area according to their use purpose. Multiple kinds of valves are installed to control a flow and pressure of the pipe conveying fluid. Valves serve as critical roles in land plants such as power plants. The performance of equipment varies depending on valve characteristics. In this study, the internal flow analysis on Cone-type valve is conducted to analyze flow field and secure a value of the flow coefficient Cv. According to the internal flow analysis, when the flow distribution of the middle cross-section of valve was open 100%, flow field was relatively and smoothly taken out. If it was open 50%, flow recirculation region increased and a little complex flow field occurred. Unlike ball valve or butterfly valve, this valve had flow recirculation in its outlet depending on a valve opening amount. Therefore, it was found that there was no flow recirculation in the outlet of Cone-type valve.

An Experimental and Numerical Analysis of Flow of Electromagnetic Pump for Molted Metal Transport (용융금속 이송용 전자기 펌프의 유동해석 및 실험)

  • Choi, Jae-Ho;Lim, Hyo-Jae;Kim, Chang-Eob;Kwon, Jung-Tae
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2621-2625
    • /
    • 2007
  • This study aims at analyzing the flow characteristics of the electromagnetic pump using a linear induction motor (LIM) for transferring molten metals. The flow characteristics of the pump are simulated by magnetohydrodynamic(MHD) program. In this system, the LIM is used for transferring molten metal by electromagnetic force. The molten metal is treated as the secondary part of the LIM. Since the LIM produces an electromagnetic force in the duct, the molten metal can flow from the furnace to the reservoir. The flow characteristics of the pump are analyzed using MHD program for magnetic field of 0.1[T] in duct. In order to prove the analysis, we made a prototype electromagnetic pump using LIM.

  • PDF

A Study on Flow Characteristics in Lubrication System of Manual Transmission in a Commercial Vehicle (상용차용 수동변속기 윤활시스템의 유동특성에 관한 연구)

  • Yun, Ji-Hun;Yi, Chung-Soeb;Suh, Jeong-Se;Song, Chul-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.2
    • /
    • pp.40-46
    • /
    • 2012
  • In this study, numerical analysis was conducted to understand the flow characteristics of lubrication system in a manual transmission installed in a commercial vehicle. Also, the analysis was conducted with the purpose of improving the heat and lubricative condition of the transmission. Discharging flow rates on each oil hole outlet according to various engine rotating speed and the length of oil hole branch was calculated. In conclusion, as engine rotating speed is high and the length of oil hole branch is long, the discharging flow rate is high by virtue of the centrifugal force. In addition, this study proposed data for optimal design of lubrication system in manual transmission for a commercial vehicle.

Numerical Analysis of Deep Seawater Flow Disturbance Characteristics Near the Manganese Nodule Mining Device (망간단괴 집광기 주위 해수 유동교란 수치해석)

  • Lim, Sung-Jin;Chae, Yong-Bae;Jeong, Shin-Taek;Cho, Hong-Yeon;Lee, Sang-Ho
    • Ocean and Polar Research
    • /
    • v.36 no.4
    • /
    • pp.475-485
    • /
    • 2014
  • Seawater flow characteristics around a manganese nodule mining device in deep sea were analyzed through numerical investigation. The mining device influences the seawater flow field with complicated velocity distributions, and they are largely dependent on the seawater flow speed, device moving speed, and injection velocity from the collecting part. The flow velocity and turbulent kinetic energy distributions are compared at several positions from the device rear, side, and top, and it is possible to predict the distance from which the mining device affects the seawater flow field through the variation of turbulent kinetic energy. With the operation of the collecting device the turbulent kinetic energy remarkably increases, and it gradually decreases along the seawater flow direction. Turbulent kinetic energy behind the mining system increases with the seawater flow velocity. The transient behavior of nodule particles, which are not collected, is also predicted. This study will be helpful in creating an optimal design for a manganese nodule collecting device that can operate efficiently and which is eco-friendly.

An Influence through the Mediating of Flows Play about the Attraction and Emotions Absorption of the Website (웹사이트의 매력성과 고객의 정서적 몰입에 대한 플로우의 매개적 영향 - 인터넷 쇼핑몰에서의 의류구매행동을 중심으로 -)

  • Kang, Sung-Ju
    • International Commerce and Information Review
    • /
    • v.10 no.2
    • /
    • pp.63-87
    • /
    • 2008
  • This study investigates the relationship between perceived system characteristics of Internet shopping mall and loyalty, and examines how perceived website attractiveness and flow play mediating roles between perceived system characteristics of Internet shopping mall and affective commitment in the context of Internet clothing shopping mall. For these purposes, the author developed a structural model which consists of several variables. In this model, perceived system characteristics of Internet shopping mall that consist of such as familiarity, reputation, uniqueness, positive emotion, self-efficacy, and interactivity were proposed to affect the website attractiveness and flow, and in turn, result in higher affective commitment. Thus, perceived website attractiveness and flow were proposed as core mediating variables between perceived mobile service characteristics and affective commitment. To test unidimensionality and nomological validity of the measures of each construct, the author employed scale refinement procedure. The results of reliability test with Cronbach's, and confirmatory factor analysis warranted unidimensionality of the measures for each construct. In addition, nomological validity of the measures was warranted from the result of correlation analysis.

  • PDF

Velocity and Shear Stress Distributions for Steady and Physiological Flows in the Abdominal Aorta/lLIAC Artery Bifurcation (복부대동맥/장골동맥 분기혈관내 정상 및 박동성 유동의 속도와 전단응력분포)

  • 서상호
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.2
    • /
    • pp.179-186
    • /
    • 1997
  • Steady and physiological flows of a Newtonian fluid and blood in the abdominal gorta/iliac artery bifurcation are numerically simulated to understand the etiology and pathogenesis of atherosclerosis. Distributions of velocity, pressure, and wall shear stress in the bifurcated arterial vessel model are calculated to investigate the differences of flow characteristics between steady and physiological flows and to compare flow characteristics of blood with that of a Newtonian fluid For the given Reynolds number the flow characteristics of physiological flows for a Newtonian fluid and blood in the bifurcated arterial vessel are quite different from thcse of steady flows. No flow separation or flow reversal in the bifurcated region appears downstream of a stenosis during the acceleration phase. However, during the deceleration phase the flow exhibits flow separation in the outer walls of daugtlter branches, which extends to the entire wall region.

  • PDF

The Study on Flow Characteristics of Impinging Jet Using PIV (PIV를 이용한 충돌제트의 유동특성에 관한 연구)

  • Kim, D.K.;Kim, J.H.;Kim, S.P.;Lee, Y.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.717-722
    • /
    • 2001
  • A present study is the flow characteristics of impinging jet by PIV measurement and numerical analysis. The flow characteristics of impinging jet flow are affected greatly by nozzle inlet velocity. An circular sharp edged nozzle type$(45^{\circ})$ was used to achieve uniform mean velocity at the nozzle inlet, and its diameter is 10mm(d). Therefore, the flow characteristics on the impinging jet can be changed largely by the control of main flow. In this parent study, we investigate the effects of inlet velocity, its variable is nozzle inlet Reynolds numbers(Re=1500, 3000, 4500, 6000 and 7500).

  • PDF

Numerical Analysis on the Flow Field and Heat Transfer Characteristics of Longitudinal Vortices in Turbulent Boundary Layer - On the Common Flow Up - (3차원 난류경계층 내에 존재하는 종방향 와동의 유동장 및 열전달 특성에 관한 수치해석(II) - Common Flow Up에 관하여 -)

  • Yang Jang-Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.9
    • /
    • pp.799-807
    • /
    • 2005
  • The flow characteristics and the heat transfer rate on a surface by the interaction of a pair of vortices are studied numerically. To analyze the common flow up produced by vortex generators in a rectangular channel flow, the pseudo-compressibility viscous method is introduced into the Reynolds-averaged Navier-Stokes equation for 3-dimensional unsteady, incompressible viscous flows. To predict turbulence characteristics, a two-layer $k-\varepsilon$ turbulence model is used on the flat plate 3-dimensional turbulence boundary The computational results predict accurately Reynolds stress, turbulent kinetic energy and flow field generated by the vortex generators. The numerical results, such as thermal boundary layers, skin friction characteristics and heat transfers, are also reasonably close to the experimental data.