• Title/Summary/Keyword: Flow calculation

Search Result 1,940, Processing Time 0.029 seconds

Evaluation of Tip Leakage Loss and Reduction of Efficiency of Axial Turbomachinery Using Numerical Calculation (수치계산에 의한 축류터보기계의 회전차 익말단의 누설손실과 효율저하에 대한 평가)

  • Ro, Soo-Hyuk;Cho, Kang-Rae
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.1 s.2
    • /
    • pp.73-80
    • /
    • 1999
  • Leakage vortices formed new blade tip causes an increase of total pressure loss near the casing endwall region and as a result, the efficiency of rotor decreases. The reduction of rotor efficiency is related to the size of the tip clearance. In this study, the three-dimensional flowfields in an axial flow rotor were calculated by varying the tip clearance under various flow rates, and the numerical results were compared with experimental ones. The effects of tip clearance and attack angle on the leakage vortex and overall performance, and the loss distributions were investigated through numerical calculations. In this study, tip leakage flow rate and total pressure loss by tip clearance were evaluated using numerical results and approximate equations were presented to evaluate the reduction of rotor efficiency by tip leakage flow.

  • PDF

Flow field Analysis In Puffer Type Interrupters of GIS/GCB (파퍼형 GIS/GCB의 유동특성 해석)

  • Song, K.D.;Shin, Y.J.;Park, K.Y.;Choi, Y.G.;Song, W.P.;Kang, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1512-1516
    • /
    • 1994
  • FLIC(Fluid in cell) method has been used for analyzing a cold gas flow field in an interrupter of a circuit treater since 1970s. In this paper FLIC method is applied to calculation of a cold gas flow and then combined with the simple are analysis method in order to investigate the flow field characteristics in a puffer type interrupter rated at 145kV 40kA. The results for a cold gas flow agree with the experimental measurement well. The other results such as pressure rise, arc temperature, post-arc current and so forth am also reasonable and show the possibility that the combined program can be applied to the design of UHV interrupters.

  • PDF

Loss Redistribution Load Flow Algorithm considering Slack Bus Effects (슬랙모선의 영향을 고려한 손실 제분배 조류계산 알고리즘)

  • Park, Si-Woo;Shin, Joong-Rin;Yim, Han-Suck
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.528-530
    • /
    • 1995
  • In the conventional power flow calculations, the slack bus is assumed to undertake the total transmission loss for the convenience of numerical computation. This is an unrealistic assumption because, in real power system, the transmission loss is supplied by all the generators and makes the power flow calculation results somewhat distorted. This paper proposes a new loss redistribution algorithm that can reduce the distortion of power flow results. In the proposed method, the system power loss redistribution algorithm is added to the conventional power flow equations and jacobian elements that are related the real power are newly constructed. In each iteration step, the power output of each generator is updated to consider the effect of calculated total power losses. Finally the usefulness of proposed method are tested through the some appropriate case studies.

  • PDF

FLOW ANALYSIS AND PERFORMANCE EVALUATION OF HIGH PRESSURE DOUBLE STAGE RING BLOWER (고압 이단 링블로워의 삼차원 유동해석 및 성능평가)

  • Lee, K.D.;Kim, K.Y.
    • Journal of computational fluids engineering
    • /
    • v.12 no.4
    • /
    • pp.85-89
    • /
    • 2007
  • In the present work, flow analysis has been performed for side channel type double stage ring blower by solving three-dimensional Reynolds-averaged Navier-Stokes equation. Shear stress transport model is used as turbulent closure. The commercial CFD code CFX 11.0 is used for the calculations. Each of two stage is calculated separately and the second stage inlet flow is same as the first stage outlet flow so that consecutive calculation is possible. Velocity and pressure fields have been analyzed at the mid-plane between blades. The numerical results are validated with experimental data for head coefficients at different flow coefficients.

A numerical study on the flow in an eccentric annulus (편심 환형관내 유동에 대한 수치 해석적 연구)

  • Woo, Nam-Sub;Seo, Byung-Taek;Bae, Kyung-Su;Hwang, Young-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1863-1868
    • /
    • 2004
  • The present study concerns a computational study of fully developed laminar flow of a Newtonian fluid through an eccentric annulus with a combined bulk axial flow and inner cylinder rotation. This study considers the identical flow geometry as in the calculation of Escudier et $al.^{(3)}$ An unexpected feature of the calculations for eccentricity ${\varepsilon}$)0.7 is the appearance of a second peak in the axial velocity, located in the narrowing gap. The distribution of the axial component of the surface shear stress has a maximum in the narrowing gap and a minimum in the widening gap.

  • PDF

Film Flow Analysis for a Vertical Evaporating Tube with Inner Evaporation and Outer Condensation (내부와 외부에서 증발과 응축이 발생하는 수직관에 대한 유동 해석)

  • Park, Il-Seouk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.8
    • /
    • pp.621-628
    • /
    • 2008
  • A numerical study for the flow, heat and mass transfer characteristics of the evaporating tube with the films flowing down on both the inside and outside tube walls has been carried out. The condensation occurs along the outside wall while the evaporation occurs at the free surface of the inside film. The transport equations for momentum and energy are parabolized by the boundary-layer approximation and solved by using the marching technique. The calculation domain of 2 film flow regions (evaporating and condensation films at the inside and outside tube wall respectively) and tube wall is solved simultaneously. The coupling technique for the problem with the 3 different regions and the 2 interfaces of them has been developed to calculate the temperature field. The velocity and temperature fields and the amount of the condensed and evaporated mass as well as the position where the evaporating film is completely dried out are successfully predicted for various inside pressures and inside film inlet flow rates.

Digital Image Stabilization Based on Edge Detection and Lucas-Kanade Optical Flow (Edge Detection과 Lucas-Kanade Optical Flow 방식에 기반한 디지털 영상 안정화 기법)

  • Lee, Hye-Jung;Choi, Yun-Won;Kang, Tae-Hun;Lee, Suk-Gyu
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.2
    • /
    • pp.85-92
    • /
    • 2010
  • In this paper, we propose a digital image stabilization technique using edge detection and Lucas-Kanade optical flow in order to minimize the motion of the shaken image. The accuracy of motion estimation based on block matching technique depends on the size of search window, which results in long calculation time. Therefore it is not applicable to real-time system. In addition, since the size of vector depends on that of block, it is difficult to estimate the motion which is bigger than the block size. The proposed method extracts the trust region using edge detection, to estimate the motion of some critical points in trust region based on Lucas-Kanade optical flow algorithm. The experimental results show that the proposed method stabilizes the shaking of motion image effectively in real time.

Effects of Flow on the Chemical Vapor Deposition of Si in System SiH$_4$-H$_2$ (SiH$_4$-H$_2$계에서 유체유동이 Si의 화학증착에 미치는 영향)

  • 조성욱;이경우;조영환;윤종규
    • Journal of the Korean institute of surface engineering
    • /
    • v.23 no.3
    • /
    • pp.160-166
    • /
    • 1990
  • The effects of the variation of proedd varibles on the flow patterns and effects of the flow patterns on the deposition rate and uniformity in the Si-epitaxy CVD with SiH4 as the source of Si were studied through the calculation by use of control volume method. The reslts showed that the natural convection was undesirable to the uniformity of deposition rate, whose effects were decreased with the dercrese with the decrese of the pressure in the reactoor and with the increase of the flow rate. However. the excessive increase of flow rate caused the movement of the unreacted gas to the substrate. Therefore it resulted in the non-uniform depositions. The rotation of substrate was apperared to improve the uniformity. The resulte of this study could used in CVD process to design the reator and to find the optimum conditions of the process variables.

  • PDF

Flow-induced instability and nonlinear dynamics of a tube array considering the effect of a clearance gap

  • Lai, Jiang;Sun, Lei;Li, Pengzhou
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1650-1657
    • /
    • 2019
  • Fluidelastic instability and nonlinear dynamics of tube bundles is a key issue in a steam generator. Especially, once the post-instability motion of the tube becomes larger than the clearance gap to other tubes, effective contact or impact between the tubes under consideration and the other tube inevitable. There is seldom theoretical analysis to the nonlinear dynamic characteristics of a tube array in two-phase flow. In this paper, experimental and numerical studies were utilized to obtain the critical velocity of the flow-induced instability of a rotated triangular tube array. The calculation results agreed well with the experimental data. To explore the post-instability dynamics of the tube array system, a Runge-Kutta scheme was used to solve the nonlinear governing equations of tube motion. The numerical results indicated that, when the flow pitch velocity is larger than the critical velocity, the tube array system is undergoing a limit cycle motion, and the dynamic characteristics of the tube array are almost similar for different void fractions.

A flow-directed minimal path sets method for success path planning and performance analysis

  • Zhanyu He;Jun Yang;Yueming Hong
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1603-1618
    • /
    • 2024
  • Emergency operation plans are indispensable elements for effective process safety management especially when unanticipated events occur under extreme situations. In the paper, a synthesis framework is proposed for the integration success path planning and performance analysis. Within the synthesis framework, success path planning is implemented through flow-directed signal tracing, renaming and reconstruction from a complete collection of Minimal Path Sets (MPSs) that are obtained using graph traversal search on GO-FLOW model diagram. The performance of success paths is then evaluated and prioritized according to the task complexity and probability calculation of MPSs for optimum action plans identification. Finally, an Auxiliary Feed Water System of Pressurized Water Reactor (PWR-AFWS) is taken as an example system to demonstrate the flow-directed MPSs search method for success path planning and performance analysis. It is concluded that the synthesis framework is capable of providing procedural guidance for emergency response and safety management with optimal success path planning under extreme situations.