• 제목/요약/키워드: Flow calculation

검색결과 1,940건 처리시간 0.028초

연료노즐 내부유동 현상의 수치해석 (Calculation of the internal flow in a fuel nozzle)

  • 구자예;박장혁;오두석;정홍철
    • 대한기계학회논문집B
    • /
    • 제20권6호
    • /
    • pp.1971-1982
    • /
    • 1996
  • The breakup of liquid jet is the result of competing, unstable hydrodynamic forces acting on the liquid jet as it exit the nozzle. The nozzle geometry and up-stream injection conditions affect the characteristics of flow inside the nozzle, such as turbulence and cavitation bubbles. A set of calculation of the internal flow in a single hole type nozzle were performed using a two dimensional flow simulation under different nozzle geometry and up-stream flow conditions. The calculation showed that the turbulent intensity and discharge coefficient are related to needle position. The diesel nozzle with sharp inlet under actual engine condition has possibility of cavitation, but round inlet nozzle has no possibility of cavitation.

터어보 기계(機械) 내부(內部)의 비가역(非可逆) H-S유동(流動)을 고려(考慮)한 준(準)3차원(次元) 유동해석(流動解析) (Quasi-Three Dimensional Calculation of Compressible Flow in a Turbomachine considering Irreversible H-S Flow)

  • 조강래;오종식
    • 설비공학논문집
    • /
    • 제3권4호
    • /
    • pp.241-249
    • /
    • 1991
  • A quasi-three dimensional calculation method is presented on the basis of Wu's idea using finite element methods. In B-B flow the governing equations are cast into a single equation to overcome the restriction of the type of turbomachinery, and Kutta condition is exactly assured by introducing a combination of two kinds of stream functions. In H-S flow a dissipative force which is assumed to be opposed to the relative velocity is added to the governing equation for a consistent loss model. The entropy change along each streamline is then calculated by assuming that the dissipative force may be a force coming from laminar viscous stresses with inviscid velocity distributions. Both the flow solvers are combined to build a three-dimensional flow field through a few iterations. For an effect of the distortion of H-S flow surface the body forces are computed after each B-B flow calculation is finished. Mizuki's centrifugal impellers are tested numerically. The reliability of the numerical solution compared with experimental data is guaranteed.

  • PDF

軸流壓縮機 回轉翼列의 流出偏差角에 관한 硏究 (A study on the deviation angle of the rotating blade row in an axial- flow compressor)

  • 조강래;방영석
    • 대한기계학회논문집
    • /
    • 제12권6호
    • /
    • pp.1407-1414
    • /
    • 1988
  • 본 연구에서는 저자들에 의해 이미 개발된 경계유선수정법에 의한 B-B 유동계 산을 통해 익열의 편차각을 계산하고 기존의 예측방법에 의한 결과와 비교 검토하여 압축성 및 3차원 비축대칭성의 효과를 검토하였다.

멱법칙 유동모델의 개선에 의한 선미 유동장내 속도분포 연구 (A Study on Velocity Distribution Around Ship Stern by Improved Power Law Flow Model)

  • 김시영
    • 대한기계학회논문집
    • /
    • 제16권7호
    • /
    • pp.1391-1397
    • /
    • 1992
  • 본 연구에서는 선형의 형상에 의하여 만곡부분이 존재하여 교차류의 성분이 증가하고, 이것에 의한 만곡와가 형성될 때에는 주유속 방향의 속도성분을 그것에 합당하게 개량해 줌으로서 더욱 유효한 속도분포 계산을 행할수 있으므로 Coles 유동 모델보다도 우수한 멱법칙 유동모델의 개선을 시도하였다. 그 방법으로서는 합성속 도를 멱법칙으로 가정하고 Okuno의 교차류 모델을 이용하여 새로운 주유동 방향의 유 속모델을 개선된 멱법칙의 식으로 표시하였다. 그리고 개선된 주유동 모델식을 이용 한 계산값과 다른 모델식의 계산값과 비교 검토하여 그 타당성을 조사하고, 또 만곡와 의 현상이 나타나는 Series 60(C$_{B}$=0.6)인 선형 선미 주위의 주유속 분포를 위치 별로 계산하고 이를 다른 계산결과 및 실험결과 값과 각각 비교하여, 여기서 제안된 모델이 더욱 개선되었음을 보이고, 또 그 타당성을 검토하였다.다.

Water transport through hydrophobic micro/nanoporous filtration membranes on different scales

  • Mian, Wang;Yongbin, Zhang
    • Membrane and Water Treatment
    • /
    • 제13권6호
    • /
    • pp.313-320
    • /
    • 2022
  • Theoretical calculation results are presented for the enhancement of the water mass flow rate through the hydrophobic micro/nano pores in the membrane respectively on the micrometer and nanometer scales. The water-pore wall interfacial slippage is considered. When the pore diameter is critically low (less than 1.82nm), the water flow in the nanopore is non-continuum and described by the nanoscale flow equation; Otherwise, the water flow is essentially multiscale consisting of both the adsorbed boundary layer flow and the intermediate continuum water flow, and it is described by the multiscale flow equation. For no wall slippage, the calculated water flow rate through the pore is very close to the classical hydrodynamic theory calculation if the pore diameter (d) is larger than 1.0nm, however it is considerably smaller than the conventional calculation if d is less than 1.0nm because of the non-continuum effect of the water film. When the driving power loss on the pore is larger than the critical value, the wall slippage occurs, and it results in the different scales of the enhancement of the water flow rate through the pore which are strongly dependent on both the pore diameter and the driving power loss on the pore. Both the pressure drop and the critical power loss on the pore for starting the wall slippage are also strongly dependent on the pore diameter.

Jacobian 행렬의 비 대각 요소를 보존시킬 수 있는 조류계산에 관한 연구 (A Study on the load Flow Calculation for preserving off Diagonal Element in Jacobian Matrix)

  • 이종기;최병곤;박정도;류헌수;문영현
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권9호
    • /
    • pp.1081-1087
    • /
    • 1999
  • Load Flow calulation methods can usually be divided into Gauss-Seidel method, Newton-Raphson method and decoupled method. Load flow calculation is a basic on-line or off-line process for power system planning. operation, control and state analysis. These days Newton-Raphson method is mainly used since it shows remarkable convergence characteristics. It, however, needs considerable calculation time in construction and calculation of inverse Jacobian matrix. In addition to that, Newton-Raphson method tends to fail to converge when system loading is heavy and system has a large R/X ratio. In this paper, matrix equation is used to make algebraic expression and then to slove load flow equation and to modify above defects. And it preserve P-Q bus part of Jacobian matrix to shorten computing time. Application of mentioned algorithm to 14 bus, 39 bus, 118 bus systems led to identical results and the same numbers of iteration obtained by Newton-Raphson method. The effect of computing time reduction showed about 28% , 30% , at each case of 39 bus, 118 bus system.

  • PDF

Fast transport with wall slippage

  • Tang, Zhipeng;Zhang, Yongbin
    • Membrane and Water Treatment
    • /
    • 제12권1호
    • /
    • pp.37-41
    • /
    • 2021
  • This paper presents the multiscale calculation results of the very fast volume transport in micro/nano cylindrical tubes with the wall slippage. There simultaneously occurs the adsorbed layer flow and the intermediate continuum fluid flow which are respectively on different scales. The modeled fluid is water and the tube wall is somewhat hydrophobic. The calculation shows that the power loss on the tube no more than 1.0 Watt/m can generate the wall slippage even if the fluid-tube wall interfacial shear strength is 1 MPa; The power loss on the scale 104 Watt/m produces the volume flow rate through the tube more than one hundred times higher than the classical hydrodynamic theory calculation even if the fluid-tube wall interfacial shear strength is 1 MPa. When the wall slippage occurs, the volume flow rate through the tube is in direct proportion to the power loss on the tube but in inverse proportion to the fluid-tube wall interfacial shear strength. For low interfacial shear strengths such as no more than 1 kPa, the transport in the tube appears very fast with the magnitude more than 4 orders higher than the classical calculation if the power loss on the tube is on the scale 104 Watt/m.

AC/HVDC 시스템의 조류계산 및 EMTP 시뮬레이션 (Load Flow Calculation and EMTP Simulation of AC/HVDC System)

  • 김진하;정교범;오성철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 추계학술대회 논문집 학회본부
    • /
    • pp.432-434
    • /
    • 1997
  • In order to find the steady-state operating condition of HVDC system interacting with AC power system, the load flow calculation of AC/HVDC system is performed. For the calculation, each generating unit is modeled by an equivalent voltage source and coupled impedance. The rectifier station is modeled by a controlled DC voltage source. EMTP simulation of the AC/HVDC system is also performed to verify the result of the load flow calculation.

  • PDF

대칭 및 비대칭 유동장에서 다회선 초음파 유량계의 유속분포 적분 방법 평가 (Performance Evaluation of the Velocity Profile Integration for the Multi-Path Ultrasonic Flowmeter in Symmetric & Asymmetric Flow Field)

  • 김주영;김경진;박성하
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.370-377
    • /
    • 2002
  • Generally, the system of calculation for the multi-path ultrasonic flow meters can be divided into two methods by how to get the mean velocity, namely, weighting and direct method. Weighting-method derive the mean velocity through modeling in theoretical velocity profile. Direct-method derive the mean velocity though actual flow distribution. The system of calculation varies with maker's transducer configuration and integration method. Each system has merits and demerits. This paper describes the system of integration that calculates line velocity over cross-section of the circular pipe. Flow rate mr discussed in this paper is a difference between theoretical flow rate and integrated flow rate according to values of Reynolds number in symmetric flow field or theoretical flow rate and integrated flow rate according to rotated model in asymmetric flow field.

  • PDF

전력계통의 공급신뢰도에 관한 연구

  • 송길영
    • 전기의세계
    • /
    • 제29권5호
    • /
    • pp.329-335
    • /
    • 1980
  • This paper presents the reliability calculation method in power supply for a part of the power system reliability control. This method involves assuming several systems that can meet the demands, accidents on the transmission facilities and power source and performing the load flow calculation which will lead to the demands which are not served, frequency of the not-served demands and mean value of the not-served demands. In this study the simplified method for reliability calculation by using the maximal flow problem was developed. The results demonstrate the remarkable advantages and more useful than any other methods for the practical applications.

  • PDF