• Title/Summary/Keyword: Flow calculation

Search Result 1,940, Processing Time 0.033 seconds

A Study on Electrified Railway Traction System Impedance Calculation (전철선로 임피던스계산에 관한 연구)

  • Lee, Chon-Bae;Kim, Wang-Gon;Lee, Jong-Woo
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1407-1412
    • /
    • 2004
  • Impedance calculations of electric railway traction systems is essential to define characteristics and to design it. The self impedance is defined voltage drop rate per unit length, the mutual impedance is represented as a voltage induced to transmission line from transmission line. The self and the mutual impedance are influenced by ground return currents. The earth is considered as a semi-infinitely extended non-ideal conductor. The current of transmission line produces earth current induced magnetically and it flow through a path having minimum impedance. Carson proposed the impedance calculation formula using wave equations and magnetic field equations. Though the formula have an improper equation, that is still used as a standard impedance calculation method. This paper introduced an impedance calculation method that the complex depth of earth return method assumes that the current in conductor returns through an imagined earth depth path located directly under original conductor at a depth of. In this paper, we showed that this proposed method has a closed form and is easier than Carson's.

  • PDF

Analysis of Low Reynolds Number Flow in Nozzle and Diffuser (노즐-디류저 내에서의 저 Reynolds수 해독특성 해석)

  • Song, Gwi-Eun;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2672-2677
    • /
    • 2007
  • An investigation of low Reynolds number flow in nozzles and diffusers which are widely used in the valveless micropump is presented. Flow characteristics in the nozzle and diffuser are explained in view of viscous effect and flow oscillation induced by pumping membrane. These calculation results show that the rectification property of valveless micropump is due to a flow separation in the diffuser and the separation is largely originated from the flow oscillation. Under the assumptions of steady flow velocity profile and flow separation in the diffuser, simplified analytical models are provided to see the dependency of rectification on the micropump geometry. Geometric parameters of channel length, nozzle throat, chamber size, and converging/diverging angle are depicted through the analytical models in low Reynolds number flow, and the prediction and experimental results are compared. This theoretical study can be used to determine the optimum geometry of valveless micropump.

  • PDF

Numerical Simulation of the Flow Field inside a New 1 Ton/Day Entrained-Flow Gasifier in KIER

  • Li, Xiang-Yang;Choi, Young-Chan;Park, Tae-Jun
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2000.04a
    • /
    • pp.43-50
    • /
    • 2000
  • The flow field of a 1 Ton/Day entrained-flow gasifier constructed in KIER was numerical simulate in this paper. The standard $k-{\varepsilon}$ turbulence model and simple procedure was used with the Primitive-Variable methods during computation. In order to find the influence factors of the flow field which may have great effects on coal gasification process inside gasifier, difference geometry parameters at various operating conditions were studied by simulation methods. The calculation results show that the basic shape of the flow field is still parabolic even the oxygen gas is injected from the off-axis position. There exist an obvious external recirculation zone with a length less than 1.0m and a small internal recirculation region nears the inlet part. The flow field inside the new gasifier is nearly similar as that of the old 0.5T/D gasifier at same position if the design of burner remains unchanged.

  • PDF

The Complex Travelling Wave by Two Directional Differential Flow Induced Chemical Instability

  • 신수범;최상준;허도성;Kenneth Showalter
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.4
    • /
    • pp.411-416
    • /
    • 1999
  • A new kind of differential flow induced chemical wave is introduced by theoretical calculation. A differential flow between the counter acting species of a dynamical activator-inhibitor system may destabilize its homogeneous reference state and cause the medium to self-organize into a pattern of travelling waves through the differential flow instability (DIFI). In a chemical system, also, the differential bulk flow may change the dynamics of the system, thus it has been refered to as the differential flow induced chemical instability (DIFICI). For DlFICI experiments, one directional flow has been commonly employed, resulting in periodic wave patterns generally. In this study, we considered two directional flow for the DIFICI wave by exchanging artificially the flow direction at some period.

Cold Flow Simulation of $SF_{6}$ Puffer Circuit Breaker

  • Bae, Chae-Yoon;Jung, Hyun-Kyo;Shin, Sang-In;Park, Oh-Hyun
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.11B no.4
    • /
    • pp.121-128
    • /
    • 2001
  • Numerical schemes for the simulation of the cold gas flow in the SF6 puffer type circuit breaker is presented. The governing equation is axisymmetric compressible Euler Equation and FVM is used to analyze the behavior of flow. The upwind scheme is used to avoid numerical instability and MUSCL is used to obtain high order accuracy. For the efficient calculation, AF-ADI scheme is used. The simulation result shows good agreement with the experimental data.

  • PDF

Low flow Calculation by Stream Morphological Characteristic Parameters in Geum River System (금강수계의 하천형태학적 특성인자에 의한 갈수량 산정)

  • An, Sang-Jin;Yun, Yong-Nam;Gang, Gwan-Won
    • Water for future
    • /
    • v.14 no.1
    • /
    • pp.31-37
    • /
    • 1981
  • It was possible to synthesize the low flow frequency curves for ungauged stations of Geum river system through a correlation analysis using the morphological parameters such as basin area, bnsin relief, total stream length of first-order stream and the 7-day, 10-year low flow.

  • PDF

Calculation of Cavity Flow with FEM & Finite Spectral Method

  • Wang Jian-Ping;Li Ting-Wen
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.131-133
    • /
    • 2003
  • The streamfunction-vorticity equations for two-dimentional cavity flow are solved by a new finite element method which uses finite spectral basis functions as interpolation functions for rectangular elements. Results for several cases with different Renold's number are compared with benchmark solutions and found to be in well agreement.

  • PDF

An Improved Fast Decoupled Newton Raphson Load flow Study (전력조류계산의 개선에 관한 연구)

  • 박영문;백영식
    • 전기의세계
    • /
    • v.26 no.2
    • /
    • pp.78-83
    • /
    • 1977
  • The Newton-Raphson method has now gained widespread popularity in Load-flow calculationes. In this paper programming is developed with aims to improve the convergence characteristics, speed and memory requirements in the above method. The method of Load-flow calculations is performed by employing the MW-O/MVAR-V decoupling principle. To reduce the memory requirements and improve the speed of calculation the programming of the Optimally Ordered Triangular Factorization method is developed. Besides this, other measures are taken to reduce memory requirements and computing time and to improve reliability. KECO'S 48 Bus system was tested and the method suggested in this paper was proved to be faster than any other methods.

  • PDF

A study on the Computer-Aided Design of steam ejector (증기 이젝터의 자동설계를 위한 전산프로그램의 개발)

  • 김경근;김용모;강신돌
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.53-60
    • /
    • 1987
  • Steam ejector is a equipment which compresses the gases to desired discharge pressure. It is widely used for the evacuation systems because of its high working confidence. And recently it is used as the thermo-compressors in the various energy saving systems. Steam ejector is constructed of three basic parts; a suction chamber, a motive nozzle and a diffuser. The high velocity stream jet of steam emitted by the motive nozzle creats suction chamber, which draws the low pressure gases. The diffuser converts the kinetic energy of high velocity flow to pressure energy. It is not easy to determine the dimensions of a steam ejector met to the desired design condition, because that the expected suction rates must be obtained by reapeating the complicate calculation. And also such a calculation is concomitant with geometrical analysis for suction part and diffuser based on the stability of steam flow. Therefore, it is considered that the Computer-Aided Design (CAD) of steam ejector is a powerful design method. In this paper, computer program for steam ejector design is developed based on the theoretical research and the previous experimental results. And the determinating method of diffuser inlet angle and the velocity development profile of suction gas along to the diffuser are suggested. The validity of the development profile of suction gas along to the diffuser are suggested. The validity of the developed computer results with other's for the practical design calculation of a manufactured steam ejector.

  • PDF