• 제목/요약/키워드: Flow calculation

검색결과 1,940건 처리시간 0.337초

스파이크 노즐 설계 (SHAPING A NOZZLE WITH A CENTRAL BODY)

  • 김철웅
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 추계 학술대회논문집
    • /
    • pp.293-298
    • /
    • 2005
  • We calculate the coordinates of an axisymmetric nozzle with a central body. This nozzle ensures a transonic flow with a plane sound surface, which is orthogonal to the symmetry axis and has a wall kink at the sonic point, The Chaplygin transformation in the subsonic part of the flow leads the Dirichlet problem for a system of nonlinear equations. The definition domain of the solution in the velocity-hodograph plane is taken as a rectangle. This enables one to obtain the nozzle with a monotonic distribution of velocity along its subsonic part. In the nonlinear differential equation, the linear Chaplygin operator for plane flows is separated, which allows the iterative calculation of the solution. The supersonic part of the nozzle is calculated under the assumption that the flow at the nozzle exit is uniform and parallel to the symmetry axis; i.e., the supersonic jet outflows to the submerged space with the same pressure. The calculation is performed by the characteristic method. The exact solution of Tricomi equation for near-sonic flows with the straight sonic line is used to 'move away' the sound plane. The velocity distribution alone the supersonic part of the nozzle is also monotonic, which ensures the absence of the boundary-layer separation and, therefore, the adequacy of the ideal-gas model. calculations show that the flow in the supersonic part of the nozzle is continuous (compression shocks are absent)

  • PDF

A Study on Efficient Calculation of Effective Reactive Power Reserves Using Sensitivity Analysis

  • Bae, Moonsung;Lee, Byongjun
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권5호
    • /
    • pp.1689-1696
    • /
    • 2017
  • In recent academic and industrial circles of the Republic of Korea, the securement of available reactive power reserve against the line faults is at issue. Thus, simulations have been performed for the securing of effective reactive power reserve (effective Q) to prepare for the line faults and improve reactive power monitoring and control methods. That is, a research has been conducted for the fast-decoupled Newton-Raphson method. In this study, a method that distinguishes source and sink regions to carry out faster provision of information in the event of line fault has been proposed. This method can perform quantification with the formula that calculates voltage variations in the line flow. The line flow and voltage changes can be easily induced by the power flow calculation performed every second in the operation system. It is expected that the proposed method will be able to contribute to securement of power system stability by securing efficient reactive power. Also, the proposed method will be able to contribute to prepare against contingencies effectively. It is not easy to prepare quickly for the situation where voltage drops rapidly due to the exhaustion of reactive power source by observing voltage information only. This paper's simulation was performed on the large scale Korean power system in steady state.

천음속 압축기 동익을 지나는 삼차원 유동의 수치해석 (Numerical Calculation of Three-Dimensional F1ow through A Transonic Compressor Rotor)

  • 이용갑;김광용
    • 대한기계학회논문집B
    • /
    • 제25권10호
    • /
    • pp.1384-1391
    • /
    • 2001
  • Three-dimensional flow analysis is implemented to investigate the flow through transonic axial-flow compressor rotor(NASA R67) and to evaluate the performances of Abid's low-Reynolds-number k-$\omega$ and Baldwin-Lomax turbulence models. A finite volume method is used fur spatial discretization. The equations are solved implicitly in time by the use of approximate factorization. The upwind difference scheme is used for inviscid terms and viscous terms are approximated with central difference. The flux-difference-splitting method of Roe is used to obtain fluxes at the cell faces. Numerical analysis is performed near peak efficiency and near stall. The results are compared with the experimental data for NASA R67 rotor. Blade-to-Blade Mach number distributions are compared to confirm the accuracy of the code. From the results, it is concluded that Abid'k-$\omega$ model is better for the calculation of flow rate and efficiency than Baldwin-Lomax model. But, the predictions for Mach number and shock structure are almost the same.

실제 형상을 통한 복부대동맥의 혈류 유동에 대한 수치적 연구 (Numerical Study on the Blood Flow in the Abdominal Artery with Real Geometry)

  • 강한영;김민철;홍이송;이종선;이종민;김찬중
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.747-752
    • /
    • 2003
  • Many clinical studies have suggested that the blood flow in ideal geometry is involved in the development of atherosclerosis. This study simulated blood flow in the abdominal artery with real geometry to investigate MWSS(mean wall shear stress), AWSS(amplitude of wall shear stress) and OSI(oscillator shear index). The calculation grid for the real geometry was constructed by extracting the surface of arterial wall from CT(Computed Tomography) or MRI(Magnetic Resonance Imaging) sheets called as DICOM (Digital Imaging and Communications in Medicines). The calculated MWSS, AWSS and OSI are much different from those of ideal geometry calculation. The MWSS increased while the AWSS decreased. Many shear forces are related to shapes of gradient. This paper will give clinical datum where the MWSS, AWSS and OSI are strong or weak. The hemodynamic analysis based on real geometry can provide surgeons with more reliable information about the effect of blood flow.

  • PDF

수치기법을 이용한 원심홴 소음의 음향학적 상사법칙 적용 (An Application of the Acoustic Similarity Law to Centrifugal Fan Noise by Numerical Calculation)

  • 전완호;이덕주
    • 소음진동
    • /
    • 제9권5호
    • /
    • pp.955-965
    • /
    • 1999
  • Centrifugal fans are widely used and the noise generated by the these machines causes one of the most serious problems. In general, the centrifugal fan noise is often dominated by tones at BPF(blade passage frequency) and its higher harmonics. This is a consequence of the strong interaction between the flow discharged form the impeller and the cutoff in the casing. However, only a few researches have been carried out on predicting the noise because of the difficulty in obtaining detailed information about the flow field and casing effects on noise radiation. The objective of this study is to understand the generation mechanism of sound and to develop a prediction method for the unsteady flow field and the acoustic pressure field of a centrifugal fan. We assume that the impeller rotates with a constant angular velocity and the flow field of the impeller is incompressible and inviscid. So, a discrete vortex method (DVM) is used to model the centrifugal by the unsteady Bernoulli equation. Lowson's method is used to predict the acoustic source. A centrifugal impeller and wedge introduced by Weidemann are used in the numerical calculation and the results are compared with the experimental data. Reasonable results are obtained not only for the peak frequencies but also for the amplitudes of the tonal sound.

  • PDF

슬러리 이송을 위한 관내 유속 추정 방법 연구 (The Research of Velocity Estimation Method in Pipe Pumping for Slurry Transportation)

  • 권승희;정순용;김유승
    • 한국지반환경공학회 논문집
    • /
    • 제15권3호
    • /
    • pp.21-32
    • /
    • 2014
  • 본 연구에서는 매개변수 추정을 통하여 기존 배관 유동에 사용되는 유속 및 마찰계수 산정식을 대신할 수 있는 추정방법을 제안하고, 이를 실험을 통하여 증명하였다. 기존 유동에 관한 운동방정식이 반영하는 파라미터가 유체 유동에 초점이 맞춰져서 실제 현장 적용 시 매개변수의 불확실성과 재료 불확도 등의 지배를 받게 되어 정확한 유동특성을 반영하기 어려운 반면에 이를 극복하기 위하여, 본 연구에서는 유동방정식의 시스템 모델링 기법을 통해 입출력 관계를 통한 유동특성 매개 변수를 산정하여 마찰계수를 추정할 수 있도록 하였다.

Power Flow Algorithm for Weakly Meshed Distribution Network with Distributed Generation Based on Loop-analysis in Different Load Models

  • Su, Hongsheng;Zhang, Zezhong
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.608-619
    • /
    • 2018
  • As distributed generation (DG) is connected to grid, there is new node-type occurring in distribution network. An efficient algorithm is proposed in this paper to calculate power flow for weakly meshed distribution network with DGs in different load models. The algorithm respectively establishes mathematical models focusing on the wind power, photovoltaic cell, fuel cell, and gas turbine, wherein the different DGs are respectively equivalent to PQ, PI, PQ (V) and PV node-type. When dealing with PV node, the algorithm adopts reactive power compensation device to correct power, and the reactive power allocation principle is proposed to determine reactive power initial value to improve convergence of the algorithm. In addition, when dealing with the weakly meshed network, the proposed algorithm, which builds path matrix based on loop-analysis and establishes incident matrix of node voltage and injection current, possesses good convergence and strong ability to process the loops. The simulation results in IEEE33 and PG&G69 node distribution networks show that with increase of the number of loops, the algorithm's iteration times will decrease, and its convergence performance is stronger. Clearly, it can be effectively used to solve the problem of power flow calculation for weakly meshed distribution network containing different DGs.

$CH_4-O_2$ Vitiated 공기가열기에서의 오염도 분석 (Analysis of Contaminants in a $CH_4-O_2$ Vitiated Air Heater)

  • 나재정;이정민;임진식
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제35회 추계학술대회논문집
    • /
    • pp.447-450
    • /
    • 2010
  • $CH_4-O_2$ vitiated 공기가열기에서의 유동 오염도 분석을 위해 가열기 및 노즐 영역에 대한 평형 및 평형 유동장 계산을 수행하였다. 유동장은 일차원 비점성 유동으로 가정하였으며 계산 결과는 측정값과 비교하였다. 연구결과 연소 지연이나 중단 현상에 영향을 주는 오염원으로써 NO 성분의 존재를 파악하기 위해서는 비평형 유동장 계산이 고려되어야 함을 알 수 있었다.

  • PDF

Experimental and numerical assessment of helium bubble lift during natural circulation for passive molten salt fast reactor

  • Won Jun Choi;Jae Hyung Park;Juhyeong Lee;Jihun Im;Yunsik Cho;Yonghee Kim;Sung Joong Kim
    • Nuclear Engineering and Technology
    • /
    • 제56권3호
    • /
    • pp.1002-1012
    • /
    • 2024
  • To remove insoluble fission products, which could possibly cause reactor instability and significantly reduce heat transfer efficiency from primary system of molten salt reactor, a helium bubbling method is employed into a passive molten salt fast reactor. In this regard, two-phase flow behavior of molten salt and helium bubbles was investigated experimentally because the helium bubbles highly affect the circulation performance of working fluid owing to an additional drag force. As the helium flow rate is controlled, the change of key thermal-hydraulic parameters was analyzed through a two-phase experiment. Simultaneously, to assess the applicability of numerical model for the analysis of two-phase flow behavior, the numerical calculation was performed using the OpenFOAM 9.0 code. The accuracy of the numerical analysis code was evaluated by comparing it with the experimental data. Generally, numerical results showed a good agreement with the experiment. However, at the high helium injection rates, the prediction capability for void fraction of helium bubbles was relatively low. This study suggests that the multiphaseEulerFoam solver in OpenFOAM code is effective for predicting the helium bubbling but there exists a room for further improvement by incorporating the appropriate drag flux model and the population balance equation.

배기계 형상에 따른 비정상 유동에서의 배기매니폴드와 촉매 입구 유동현상 해석 (Study on the Exhaust Flow Analysis of Unsteady Flow with Various Exhaust Manifolds and Catalyst Geometries)

  • 이재호;김대우;곽호철;박심수
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2004년도 제29회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.217-222
    • /
    • 2004
  • In recent year, as the current and future emission regulations go stringent, the research of exhaust manifold and CCC has become the subject of increasing interest and attention. This study is concerned with the systematic approach to improve catalyst flow uniformity and light-off behavior through the basic understanding of exhaust flow characteristics. Computational approach to the unsteady compressible flow for exhaust manifold of 4-1 type and 4-2-1 type and CCC system of a 4-cylinder DOHC gasoline engine was performed to investigate the flow distribution of exhaust gases. In this study, through calculation, the effects of geometric configuration of exhaust manifold on flow structure and its maldistribution in monolith were mainly investigated to understand the exhaust flow patterns in terms of flow uniformity. Based on the design guidance resulting from this fundamental study, the flow uniformity of 4-2-1 type exhaust manifold demonstrated the more improved exhaust characteristics than that of the 4-1 type one.

  • PDF