• Title/Summary/Keyword: Flow calculation

검색결과 1,940건 처리시간 0.033초

날씨효과를 고려한 전력계통의 상정사고 순위 결정 (A Determining Contingency Ranking Using the Weather Effects of the Power System)

  • 김경영;이승혁;김진오;김태균;전동훈;차승태
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권9호
    • /
    • pp.487-493
    • /
    • 2004
  • The electric power industry throughout the world is undergoing considerable changes from the vertically integrated utility structure to the deregulated market. However, the deregulated electricity market is operated with respect to theory of economical efficiency, and therefore, the system operator requires data with fast contingency ranking for security of the bulk power system. This paper compares the weather dependant probabilistic risk index(PRI) with the system performance index for power flow in the IEEE-RTS. The system performance index for power flow presents the power system stability. This paper presents fast calculation method for determining contingency ranking using the weather dependant probabilistic risk index(PRI). The probabilistic risk index can be classified into the case of normal and adverse weather. This paper proposes calculation method using the probabilistic risk index in determining contingency ranking required for security under the deregulated electricity market.

축류 송퐁기의 공력학적 설계 (Aerodynamic Design of the Axial Fan)

  • 손상범;주원구;조강래;남형백;윤인규;남임우
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1998년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.64-69
    • /
    • 1998
  • In this study, a preliminary design method of the axial fan was systematically established based on the two-dimensional cascade theory. Flow deviation, lift coefficient, distribution of velocity and pressure coefficient on blade surfaces were predicted by an inviscid theory of Martensen method, which was also applied to select an airfoil of required performance in the present design process. The aerodynamic performance of designed blades can be predicted quickly and reasonably by using the through-flow calculation method in the preliminary design process. It would be recommendable to adopt three-dimensional viscous flow calculation at the final design refinement stage.

  • PDF

선로용량 산정법을 이용한 상정사고 선택 (Contigency Ranking Technique Using Line Capacity Calculation Method)

  • 박규홍;정재길;현승범;이인용;정인학
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 A
    • /
    • pp.285-288
    • /
    • 2000
  • This paper presents a technique for contingency ranting using line capacity calculation method and outage distribution factors(LODF) which are established by generation shift distribution factors from DC load flow solutions. By using the LODF, the line flow can be calculated a ccording to the modification of base load flow if the contingency occur. To obtain contingency ranting, maximum power tansferred to the load is obtained when load impedance $Z_r$ equal to line impedance $Z_s$. ( $Z_r$/ $Z_s$=1) The proposed algorithm has been validated in tests on a 6-bus test system.

  • PDF

배전자동화 시스템에서 분포부하를 고려한 새로운 조류계산 알고리즘 (A New Load Flow Algorithm based on DAS with Considering Distributed Load)

  • 양하;최면송;임일형;이승재
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 A
    • /
    • pp.169-170
    • /
    • 2006
  • In this paper, A new algorithm for load flow calculation is proposed for radial distribution network. Feeder Remote Terminal Unit (FRTU) is utilized to collect data such as current magnitude and angle of power factor at each node. Proposed algorithm is based on the model of distributed load in distribution system. Load flow calculation is using four terminal constants method.

  • PDF

Calculation of Pressure Profiles in a Molecular Flow Regime using LTSpice IV

  • Choi, Won-Shik;Kang, Kun-Uk;Kim, Se-Hyun;Park, Chongdo
    • Applied Science and Convergence Technology
    • /
    • 제25권4호
    • /
    • pp.67-72
    • /
    • 2016
  • This article describes an electrical network analysis (ENA) method to calculate the pressure distribution of a vacuum system in a molecular flow regime. The vacuum system was modeled using electrical components. For an accurate analysis, a complexly combined pipe model, excluding entrance conductance, was employed and the pressure distribution was simulated using ENA. A vacuum system comprising three vacuum pumps was used for simplicity. In addition, the ENA results were compared with results from finite element analysis (FEA) and experimental measurements. The pressure distribution profiles estimated from ENA, performed using the LTSpice IV software, were in agreement with FEA and experimental results.

스마트무인기 프롭로터 비정상 유동해석 (Unsteady Flow Simulation of the Smart UAV Proprotor)

  • 최성욱;김재무
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.415-421
    • /
    • 2006
  • The unsteady flow calculation around the proprotor of Smart UAV was conducted. Using the flight scenario of SUAV which composed of hover, transition, and airplane mode, the aerodynamic analysis of proprotor were performed for the variation of collective pitch, rpm, forward speed, and tilt angle. The unsteady compressible Navier-Stokes equations were used for the calculation and the dynamic overset grid technique was applied for the rotating proprotor. The aerodynamic performance of proprotor calculated in this way were validated by comparing with the performance data obtained from the blade element momentum method.

  • PDF

비정렬 중첩격자기법을 이용한 수중추진기 주위의 점성유동 해석 (VISCOUS FLOW ANALYSIS OF UNDERWATER PROPULSOR USING AN UNSTRUCTURED OVERSET MESH TECHNIQUE)

  • 안상준;권오준;정영래
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.341-346
    • /
    • 2010
  • In this paper, viscous flow calculation of pump-jet that is used as underwater propulsor was made by using RANS equation. For the validation, calculation for DTRC4119 marine propeller was made and reasonable agreements were obtained between the present results and the experiment. An unstructured overset mesh technique is used for analysis of relative motion between rotor and stator in pump-jet propulsor. Results for pump-jet propulsor were compared with computational results of another researcher.

  • PDF

Assessment of Reynolds Stress Turbulence Closures in the Calculation of a Transonic Separated Flow

  • Kim, Kwang-Yong;Son, Jong-Woo;Cho, Chang-Ho
    • Journal of Mechanical Science and Technology
    • /
    • 제15권7호
    • /
    • pp.889-894
    • /
    • 2001
  • In this study, the performances of various turbulence closure models are evaluated in the calculation of a transonic flow over axisymmetric bump. k-$\varepsilon$, explicit algebraic stress, and two Reynolds stress models, i.e., GL model proposed by Gibson & Launder and SSG model proposed by Speziale, Sarkar and Gatski, are chosen as turbulence closure models. SSG Reynolds stress model gives best predictions for pressure coefficients and the location of shock. The results with GL model also show quite accurate prediction of pressure coefficients down-stream of shock wave. However, in the predictions of mean velocities and turbulent stresses, the results are not so satisfactory as in the prediction of pressure coefficients.

  • PDF

비대선 모형에 대한 점성유동의 수치해석연구 (A Study on the Numerical Analysis of the Viscous Flow for a Full Ship Model)

  • 박명규;강국진
    • 한국항해학회지
    • /
    • 제19권2호
    • /
    • pp.13-22
    • /
    • 1995
  • This paper presents the numerical analysis results of the viscous flow for a full ship model. The mass and momentum conservation equations are used for governing equations, and the flow field is discretized by the Finite-Volume Method for the numerical calculation. An algebraic grid and elliptic grid generation techniques are adopted for generation of the body-fitted coordinates system, which is suitable to ship's hull forms. Time-marching procedure is used to solve the three-dimensional unsteady problem, where the convection terms are approximated by the QUICK scheme and the 2nd-order central differencing scheme is used for other spatial derivatives. A Sub-Grid Scale turbulence model is used to approximate the turbulence, and the wall function is used at the body surface. Pressure and velocity fields are calculated by the simultaneous iteration method. Numerical calculations were accomplished for the Crude Oil Tanker(DWT 95,000tons, Cb=0.805) model. Calculation results are compared to the experimental results and show good agreements.

  • PDF

유동해석에 의한 연료전지용 수소 재순환 블로워 개발 (Development of Hydrogen Recirculation Blower for Fuel Cell Vehicle by Flow Analysis)

  • 심창열;홍창욱;김영수
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.684-689
    • /
    • 2005
  • Parametric calculation were conducted to estimate performance of variable geometry of hydrogen recirculation blower for fuel cell vehicle. The pressure rise and efficiency are effected by change of the geometric parameter of impeller and casing, and stripper clearance under various mass flow. Hydrodynamic performance were evaluated, and also the inner flow fields were investigated by CFD. Calculated results show good coincidence with experimental test results of total pressure performance. Performance of model designed by parametric calculations satisfied experimental data of verification model.

  • PDF