• 제목/요약/키워드: Flow and mass transfer

검색결과 974건 처리시간 0.023초

90도 요철이 설치된 회전덕트에서 유출홀이 열/물질전달에 미치는 영향 (Effects of Bleed Hole on Heat/Mass Transfer in a Rotating Channel with Transverse Ribs)

  • 박석환;전윤흥;김경민;이동현;조형희
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.178-184
    • /
    • 2005
  • The present study investigates the effects of bleed flow on heat/mass transfer and pressure drop in a rotating channel with transverse rib turbulators. The hydraulic diameter ($D_h$) of the square channel is 40.0 mm. The bleed holes are located between the rib turburators on leading surface and the hole diameter (d) is 4.5 mm. The square rib turbulators are installed on both leading and trailing surfaces. The rib-to-rib pitch is 10.0 times of the rib height (e) and the rib height-to-hydraulic diameter ratio ($e/D_h$) is 0.055. The tests were conducted at various rotation numbers (0, 0.2, 0.4), while the Reynolds number and the rate of bleed flow to main flow were fixed at 10,000 and 10%, respectively. The results suggest that the heat/mass transfer characteristics in the internal cooling passage are influenced by rib turbulators, bleed flow and the Cariolis force induced by rotation. For the rotating ribbed passage with bleed flow, the heat/mass transfer on the leading surface is hardly affected by bleed flow, but that on the trailing surface decreases due to the diminution of main flow. The results also show that the friction factor decreases with the bleed flow.

  • PDF

음향여기에 의한 2차원 후방계단과 공동 내의 유동 및 열전달 특성 변화 (Flow and Heat Transfer Characteristics in a Separated Flow over Backward-facing Step and Cavity Controlled by Acoustic Excitation)

  • 조형희;강승구;이동호
    • 대한기계학회논문집B
    • /
    • 제25권9호
    • /
    • pp.1253-1262
    • /
    • 2001
  • Experimental study is conducted to investigate the heat/mass transfer and flow characteristics for the flow over backward-facing step and cavities. A naphthalene sublimation method has been employed to measure the mass transfer coefficients on the duct wall and LDV system has been used to obtain mean velocity profiles and turbulence intensities. Reynolds number based on the step height and free stream velocity is 20,000 and St numbers of acoustic excitations given to separated flow are 0.2 to 0.4. The spectra of streamwise velocity fluctuation show a sharp peak forcing frequency for an acoustically excited flow. The results reveal that the vortex pairing and overall turbulence level are enhanced by the acoustic excitation and a significant decrease in the reattachment length and the increased turbulence intensity are observed with the excitation. A certain acoustic excitation increases considerably the heat/mass transfer coefficient at the reattachment point and in the recirculation region. For the cavities, heat/mass transfer is enhanced by the acoustic excitation due to the elevated turbulence intensity. For the 10H cavity, the flow pattern is significantly changed with the acoustic excitation. However, for the 5H cavity, the acoustic excitation has little effect on the flow pattern in the cavity.

균일 전단류내에 있는 원봉주위의 국소 대류 물질 전달에 관한 실험적 연구 (Experimental Study on Local Convective Mass Transfer From a Circular Cylinder in Uniform Shear Flow)

  • 류명석;성형진;정명균
    • 대한기계학회논문집
    • /
    • 제13권4호
    • /
    • pp.789-798
    • /
    • 1989
  • 본 연구에서는 평균속도구배를 용이하게 변화시킬 수 있는 전단유동 발생기를 제작하였다. 최고속도구배는 38se $c^{-1}$까지 얻을 수 있으며 최대중심선 속도는 15m/sec까지이다. 10개의 채널(두께 2mm인 알루미늄판)로 유동단면을 등분하 였으며, 각 채널의 내부저항조절 방법으로 마름모형태의 막대인 knob을 설치하였다.

매끈한 벽면을 가진 회전덕트 내 레이놀즈 수에 따른 열/물질전달 및 압력강하 특성 연구 (Experimental Study of Reynolds Number Effects on Heat/Mass Transfer and Pressure Drop Characteristics in a Rotating Smooth Duct)

  • 김경민;박석환;이동현;조형희
    • 설비공학논문집
    • /
    • 제18권11호
    • /
    • pp.888-895
    • /
    • 2006
  • The present study has been conducted to investigate the effects of Reynolds number on heat/mass transfer and pressure drop characteristics in a rotating smooth two-pass duct. For stationary cases, the heat/mass transfer and pressure drop Is decreased on turning region of both leading and trailing surfaces as Reynolds number increases. For rotating cases, increment of Reynolds number affects differently the heat/mass transfer and pressure drop on the leading and trailing surfaces. In the first pass, for example, the heat/mass transfer on the leading surface is greatly increased, though the heat/mass transfer on the trailing surface is almost the same. The reason is that effect of the main flow is more dominant than effect of secondary flow. In particular, it gave decrement of the heat/mass transfer and the pressure drop at turning region and upstream region of second pass for both non-rotating and rotating cases.

Experimental Study on Heat and Mass transfer Coefficient Comparison Between Counterflow Types and Parallel in Packed Tower of Dehumidification System

  • Sukmaji, I.C.;Choi, K.H.;Yohana, Eflita;Hengki R, R.;Kim, J.R.
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 춘계학술발표대회 논문집
    • /
    • pp.162-169
    • /
    • 2009
  • In summer electrical energy is consumed in very high rate. It is used to operate conventional air conditioning system. Hot and humid air can germinate mould spores, encourage ill health, and create physiological stress (discomfort). Dehumidifier solar cooling effect is the one alternative solution saving electrical energy. We use surplus heat energy in the summer, to get cooling effect and then to get human reach to comfort condition. These devices have two system, dehumidifier and regeneration system. This paper will be focus in dehumidifier system. Dehumidifier system use for absorbing moisture in the air and decreasing air temperature. When the liquid desiccant as strong solution contact with the vapor air in the packed tower, it works. The heat and mass transfer performances of flow pattern in the packed tower of dehumidifier are analyzed and compared in detail. In this experiment was introduced, the flow patterns are parallel flow and counter flow. The performance of these flow patterns will calculate from air side. Which is the best flow pattern that gave huge mass transfer rate? The proposed dehumidifier flow pattern will be helpful in the design and optimization of the dehumidifier solar cooling system.

  • PDF

흡수성능에 미치는 수직 액막 파동의 영향에 관한 연구 (Effect of Wavy Flow of Vertical Falling Film on the Absorption Performance)

  • 김정국;조금남
    • 설비공학논문집
    • /
    • 제16권2호
    • /
    • pp.194-201
    • /
    • 2004
  • In the present study, the improvement of absorption characteristics on combined heat and mass transfer process in a falling film of a vertical absorber by change of geometric parameters were studied experimentally and analytically. The energy and diffusion equations are solved simultaneously to give the temperature and concentration variations at the liquid solution-refrigerant vapor interface and at the wall. Absorption behaviors of heat and mass transfer were analyzed through falling film of the LiBr aqueous solution contacted by refrigerant vapor in the absorber. Effects of film Reynolds number, geometric parameters by insert device (spring) and flow pattern on heat and mass transfer performances have been also investigated. Especially, effects of the flow pattern by geometric parameters have been considered to observe the total heat and mass transfer rates through falling film along the absorber. As a numerical and experimental result, maximum absorption rate was shown at the wave-flow by insert device (spring). The error ranges between experiment and analysis were from 5.8 to 12% at Re$_{f}$ > 100.0.

Issues Related to the Modeling of Solid Oxide Fuel Cell Stacks

  • Yang Shi;Ramakrishna P.A.;Sohn Chang-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • 제20권3호
    • /
    • pp.391-398
    • /
    • 2006
  • This work involves a method for modeling the flow distribution in the stack of a solid oxide fuel cell. Towards this end, a three dimensional modeling of the flow through a Solid Oxide Fuel Cell (SOFC) stack was carried out using the CFD analysis. This paper examines the efficacy of using cold flow analysis to describe the flow through a SOFC stack. It brings out the relative importance of temperature effect and the mass transfer effect on the SOFC manifold design. Another feature of this study is to utilize statistical tools to ascertain the extent of uniform flow through a stack. The results showed that the cold flow analysis of flow through SOFC might not lead to correct manifold designs. The results of the numerical calculations also indicated that the mass transfer across membrane was essential to correctly describe the cathode flow, while only temperature effects were sufficient to describe the anode flow in a SOFC.

유출홀이 설치된 배열 충돌제트의 유동 및 열전달 특성 (Flow and Heat/Mass Transfer Characteristics of Arrays of Impingement Jets with Effusion Holes)

  • 이동호;윤필현;조형희
    • 대한기계학회논문집B
    • /
    • 제25권11호
    • /
    • pp.1606-1615
    • /
    • 2001
  • The present study has been conducted to investigate heat/mass transfer characteristics on a target plate fur arrays of circular impingement jets with and without effusion holes. A naphthalene sublimation method is employed to determine local heat/mass transfer coefficients on the target plate. The effusion holes are located at the center of four injection holes in the injection plate where the spent air is discharged through the effusion hole after impingement on the target plate. For the array jet impingement without effusion holes, the array jets are injected into the crossflow formed by upstream spent air because the impinged jets must flow to the open exit. For small gap distances, heat/mass transfer coefficients without effusion holes are very non-uniform due to crossflow effects and re-entrainments of spent air. However, uniform distributions and enhanced values of heat/mass transfer coefficients are obtained by installing the effusion holes. For large gap distances, the crossflow has little influence on heat/mass transfer characteristics on the target palate due to the large cross-sectional open area between the injection and target plates. Therefore, the distributions and levels of heat/mass transfer coefficients are almost the same for both cases.

원형가이드 설치에 따른 충돌제트/유출냉각에서 열/물질전달 특성 (Heat/Mass Transfer for Impingement/Effusion Cooling System with Circular Guide)

  • 홍성국;조형희
    • 대한기계학회논문집B
    • /
    • 제30권12호
    • /
    • pp.1147-1154
    • /
    • 2006
  • An experimental investigation was conducted to enhance the heat/mass transfer for impingement/effusion cooling system when the initial crossflow was formed. For the improvement of heat transfer, the circular guide is installed on the injection hole. At the fixed jet Reynolds number of 10,000, the measurements were carried out for blowing ratios ranging from 0.5 to 1.5. The local heat/mass transfer coefficients on the effusion plate are measured using a naphthalene sublimation method. The result presents that the circular guide protects the injected jet from the initial crossflow, increasing the heat/mass transfer. The heat transfer of stagnation region is hardly changed regardless of the blowing ratio. The secondary peak is obviously formed by flow transition to turbulent flow. At high blowing ratio of 1.5, the circular guide produces $26{\sim}30%$ augmentation on the averaged heat/mass transfer while the case without circular guide leads to the low and non-uniform heat/mass transfer. With the increased heat/mass transfer, the installation of circular guide is accompanied by the increase of pressure loss in the channel. However, the pressure drop caused by the circular guide is lower than that for other cooling technique with the circular pin fin.

입사각 변화에 따른 터빈 블레이드에서의 열전달 특성 변화 (I) - 블레이드 끝단면 - (Effect of Incidence Angle on Turbine Blade Heat Transfer Characteristics (I) - Blade Tip -)

  • 이동호;조형희
    • 대한기계학회논문집B
    • /
    • 제31권4호
    • /
    • pp.349-356
    • /
    • 2007
  • The present study investigated local heat/mass transfer characteristics on the tip of the rotating turbine blade with various incoming flow incidence angles. The experiments are conducted in a low speed annular cascade with a single stage turbine. The blade has a flat tip with a mean tip clearance of 2.5% of the blade chord. The incoming flow Reynolds number is $1.5{\times}10^5$ at design condition. To examine the effect of off-design condition, the experiments with various incidence angles ranging between $-15^{\circ}$ and $+7{\circ}$ were conducted. A naphthalene sublimation method is used to measure detailed mass transfer coefficient on the blade. The results indicated that the incidence angle strongly affects the behavior of tip leakage flow around the blade tip and consequently plays an important role in determining heat transfer characteristics on the tip. For negative incidence angles, the heat/mass transfer in the upstream region on the tip decreases by up to 20%. On the contrary, for positive incidence angles, much higher heat transfer coefficients are observed even with small increase of incidence angle.