• Title/Summary/Keyword: Flow Velocity

Search Result 7,045, Processing Time 0.03 seconds

Measurement of velocity Pronto in Liquid Metal Flow Using Electromagnetic Tomography (전자기 토모그래피를 이용한 액체 금속 속도장 측정)

  • Ahn Yeh-Chan;Kim Moo Hwan;Choi Sang-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.10
    • /
    • pp.1271-1278
    • /
    • 2004
  • In order to measure non-intrusively velocity profile in liquid metal flow, a modified electromagnetic flowmeter was designed, which was based on electromagnetic tomography technique. Under the assumption that flow is fully-developed, axisymmetric and rectilinear, the velocity profile was reconstructed after the flowmeter equation, the first kind of Fredholm integration equation, was linearized. In reconstruction process Tikhonov regularization method with regularization parameter was used. The reconstructed velocity profile had the nearly same as turbulent flow profile which was approximately represented as log law. In addition, flowmeter output fur a fixed magnet rotation angle was linearly proportional to flow rate. When magnet rotation angle was 54$^{\circ}$, axisymmetric weight function was nearly uniform so that the flowmeter gives a constant signal for any fully-developed, axisymmetric and rectilinear profile with a constant flow rate.

NUMERICAL ANALYSIS FOR 2-D FREE JET FLOW BY SMAC SCHEME (SMAC법에 의한 2차원 자유분류의 수치해석)

  • Jung, S.H.;An, Y.J.;Shin, B.R.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.298-302
    • /
    • 2009
  • Numerical analysis of two dimensional incompressible laminar free jet flow was carried out by using finite difference SMAC scheme. Flow characteristics of free jet flow such as jet width, similarity of jet velocity and hypothetical origin were investigated for different Reynolds numbers of Re=30 and 100. The reliability of predictions were confirmed by comparison with exact solution. Non-dimensional velocity distribution showed similarity of jet flow velocity after initial region. In the region of laminar flow, the location of hypothetical origin becomes more distant with Reynolds number.

  • PDF

Flow Analysis in an Entrained Flow Combustor (분류층 연소기내의 유동해석)

  • 양희천;박상규;정동화
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.1308-1316
    • /
    • 2001
  • This paper described a numerical investigation performed to understand better the effects of flow parameters in an entrained flow combustor on the flow characteristics. The computational model was based on the gas phase Eulerian equations of mass, momentum and energy. The code was formulated with RNG $k-\varepsilon$ model for turbulent flow. The calculation parameters were the ratio of primary and secondary jet velocity and the height difference between primary and secondary jet As the secondary jet velocity increased, the upper recirculation 3one of the primary jet was strengthened. It was found that as the primary jet velocity increased, there was a critical jet Velocity at which the size of upper and lower recirculation zone was reversed.

  • PDF

Flow Analysis for an Effective Weld Line Control in Injection Molding (효과적인 웰드라인 제어를 위한 사출성형 유동해석)

  • 김현필;김용조
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.2
    • /
    • pp.64-72
    • /
    • 2001
  • Weld line is one of serious troubles which are observed in a plastic part manufactured by a injection molding process. This is caused by many process factors, which are molding pressure, temperature, velocity, location of a injection gate, mold geometry and material properties. investigation on the effects of these process factors to the appearance of a weld line was carried out using a finite element method. Filling and packing analyses were carried out by modifying both the configuration of the injection gates and cavity thickness. Proper locations of the injection gates could be determined by considering molding pressure, temperature, velocity and frozen layer, and whereby the weld line was controled. In order to make a weak appearance of the weld line, flow velocity and flow front in a cavity were also investigated by modifying a cavity thickness. As a result, flow front was extended around the corner in the cavity by changing the flow velocity and hence the appearance of the weld line was much weakened.

  • PDF

Measurement of Velocity Profile in Liquid Metal Flow Using Electromagnetic Tomography (전자기 토모그래피를 이용한 액체 금속 속도장 측정)

  • Choi, Sang-Ho;Ahn, Yeh-Chan;Kim, Moo-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1749-1754
    • /
    • 2004
  • In order to measure non-intrusively velocity profile in liquid metal flow, a modified electromagnetic flowmeter was designed, which was based on electromagnetic tomography technique. Under the assumption that flow is fully-developed, axisymmetric and rectilinear, the velocity profile was reconstructed after the flowmeter equation, the first kind of Fredholm integration equation, was linearized. In reconstruction process Tikhonov regularization method with regularization parameter was used. The reconstructed velocity profile had the nearly same as turbulent flow profile which was approximately represented as log law. In addition, flowmeter output for a fixed magnet rotation angle was linearly proportional to flow rate. When magnet rotation angle was $54^{\circ}$, axisymmetric weight function was nearly uniform so that the flowmeter gives a constant signal for any fully-developed, axisymmetric and rectilinear profile with a constant flow rate.

  • PDF

A Study on Flow Velocity Distribution at Inlet and Exit of Diesel Particulate Filter with L-Shape Inlet Connector Using Automatic Measurement (측정자동화에 의한 입구연결부 형상이 L-형인 디젤매연필터 입.출구에서의 유속 분포에 관한 연구)

  • Lee, Choong-Hoon;Bae, Sang-Hong;Choi, Ung;Lee, Su-Ryong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.4
    • /
    • pp.93-100
    • /
    • 2007
  • The flow velocity distribution at inlet and exit of Diesel Particulate Filter(DPF) by fabricating L-shape connector with the DPF was measured using a Pitot-tube and 2-D transverse machine. An adaptor designed for making the Pitot tube probe access to the inlet and exit of the DPF was connected with the inlet and exit flange of the DPF, respectively. The Pitot tube which was mounted in the 2-D positioning machine could access to the inlet and exit of the DPF through the rectangular window of the adaptor. The L-shape connector in the DPF inlet has a flow guide which is a perforated steel pipe. The flow velocity distribution at the inlet of the DPF showed a chaotic velocity distribution which is different from that with a diffuser type connector. The velocity distribution at the exit of the DPF showed a crown shape which is similar to that of the diffuser type connector. The velocity distribution at the exit of DPF showed different patterns according to the air flow rate.

Improvement of the Model for Predicting Swing Check Valve Opening (스윙형 역지 밸브 개도 예측 모델 개선)

  • Kim, Yang-seok;Song, Seok-yoon;Kim, Dae-woong;Park, Sung-keun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.315-320
    • /
    • 2004
  • Swing check valves are the most common type of check valve in nuclear power plant and need to be operated property to perform their functions and to keep the valve internals stable. However, for a swing check valve disc to remain stable, the opening characteristics should be identified and the upstream flow velocity should be enough to hold the disc fully open and without motion. Thus it is necessary to develop a model for predicting the flow velocity for a given disc opening. In the present study, the disc positions with mean flow velocity were measured for 3 inch and 6 inch swing check valves. Comparison of the measurements with the existing models showed that the models underestimate the mean flow velocity for a given disc position. Therefore, the existing model for predicting swing check valve disc position was improved with the realistic disc impingement area perpendicular to the flow stream and the experimental data. The result showed that the improved model with the best estimate of kb = 0.04 predicts well the disc openings of 6 inch swing check valve, especially in the low velocity region. For better prediction of the disc opening at high flow velocity, however, it is recommended to develop a kb correlation with the disc angle.

  • PDF

Effect of Water Velocity on Foraging Behavior of Planktivore on Zooplankton in Aquatic Ecosystems (유속조건에 따른 수중 생태계내 소형어류의 동물플랑크톤 포식 행동 변화에 관한 연구)

  • Park, Bae Kyung;Park, Seok Soon
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.1
    • /
    • pp.79-83
    • /
    • 2005
  • Foraging behaviour of false dace, Pseudorasbora parva, was investigated in water flowing at various velocities with the existence of a cavity for rest. The pursuit comprised three succeeding processes such as, approaching, chasing and attacking. Angles between the fish body and the water flow direction and swimming speeds increased in the latter stages of approaching, chasing and attacking. All pursuit angles, swimming speeds and distances increased with flow velocity and peaked at the flow velocity of 7 cm/sec. At higher velocities, however, the fish avoided the use of much energy against the large drag force. The probability of capture and the feeding rate steadily decreased with increasing flow velocity. Under the fast flow, the fish adjusted their swimming speed to get the optimum velocity relative to the flowing water for the energetic budget. Fish spent more time in the cavity as flow velocity increased to avoid the energy expenditure necessitated by the high velocity.

Flow characteristics of a cross jet issued in the fully developed pipe flow (파이프유동장에 분사되는 제트의 유동특성 연구)

  • Kim, Gyeong-Cheon;Sin, Dae-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.7
    • /
    • pp.927-936
    • /
    • 1998
  • In the fully developed pipe flow, when jet is injected in cross to the flow there are complex transition flows caused by interaction of the cross flow and jet. These interactions are studied by means of the flow visualization methods and frequency analysis using a hot-wire anemometer. The velocity range of cross flow of the pipe is 0.3 m/s ~ 1.2 m/s and the corresponding Reynolds number, R$\sub$p/, based on the pipe diameter is 2.25 * 10$\^$3/ ~ 9.02 * 10$\^$3/. The velocity ratio (R), jet velocity/cross flow velocity, is chosen from 2 to 10. A circular cylinder is placed in the pipe instead of jet to observe the vortex shedding from the solid body. To compare the jet and circular cylinder flow, the vortical structure is analyzed in both cases and the structure of vortices and the origin of its formation are investigated, especially. The vortex shedding of the dominant coherent structure is compared between the jet flow and the circular cylinder flow. In the case of the jet flow, the Strouhal numbers are different depending on the existence of the upright vortex as well as the velocity ratio (R).

Flow Characteristics of Vertical Upward Gas-Liquid Two-Phase Flow (수직상향 기액이상류의 유동특성)

  • Choi Bu-Hong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.4
    • /
    • pp.377-383
    • /
    • 2005
  • This paper deals with the flow characteristics of air-water two-phase flow in a vertical tube of 10mm I.D. and 600mm in length at an adiabatic condition. The obtained experimental data were covered with the liquid superficial velocity ranging from 0.095m/s to 2.56m/s. and the gas superficial velocity ranging from 0.032m/s to 21.08m/s. The effects of the gas and liquid superficial velocity on the flow pattern transitions, frictional pressure drop, and film thickness and gas-liquid interface roughness were also examined. It was found that the film thickness increased and the liquid film wave length was more longer with the liquid superficial velocity $j_L$ increasing at $j_G$ constant. It was also showed that the frictional pressure drops were experienced in three regions. namely increasing region(bubbly flow), decreasing region (Taylor bubble and slug flows) and re-increasing region (annular flow).