• 제목/요약/키워드: Flow Technique

검색결과 3,615건 처리시간 0.033초

CHIMERA 격자기법을 이용한 고속전철 주위의 전산유동해석 (Numerical Flow Simulations Around High Speed Train Using CHIMERA Grid Technique)

  • 최성욱;김인선
    • 한국전산유체공학회지
    • /
    • 제1권1호
    • /
    • pp.81-87
    • /
    • 1996
  • The aerodynamic charateristics of high speed train can be improved by well-designing of its fore-body shape. In this paper, as a way of the design a fore-body shape which has optimal aerodynamic charasteristics, 9 models of fore-body shapes are proposed and the change of aerodynamic charateristics is studied through calculations of flow field around high speed train for each fore-body shape. The flow field around high speed trains are calculated using Thin-Layer Navier-Stokes equation and Chimera grid technique. The application of Chimera grid technique to these flow calculations over high speed train which has ground plane under the train makes grid generation easily. As a computaional algorithm, Pulliam and Chaussee's Diagonal algorithm, the modified form of the Beam and Warming's AF scheme which operates on block-tridiagonal matrices, is selected to reduce computaional time. Introducing hole points flag concept to this Diagonal algorithm. a algorithm for Chimera grid is generated. The variational trends of aerodynamic characteristics are studied from the results of flow calculations around high speed trains for 9 fore-body shapes.

  • PDF

재료의 변형거동 추적을 통한 예비형상 설계 (Preform Design Technique by Tracing the Material Deformation Behavior)

  • 홍진태;박철현;이석렬;양동열
    • 소성∙가공
    • /
    • 제13권6호
    • /
    • pp.503-508
    • /
    • 2004
  • Preform design techniques have been investigated to reduce die wear and forming load and to improve material flow, filling ratio, etc. In hot forging processes, a thin deformed part of a workpiece, known as a flash, is formed in the narrow gap between the upper and lower tools. Although designers make tools that generate a flash intentionally in order to improve flow properties, excessive flash increases die wear and forming load. Therefore, it is necessary to make a preform shape that can reduce the excessive flash without changing flow properties. In this paper, a new preform design technique is proposed to reduce the excessive flash in a metal forging process. After a finite element simulation of the process is carried out with an initial billet, the flow of material in the flash region is traced from the final shape to the initial billet. The region belonging to the flash is then easily found in the initial billet. The finite element simulation is then carried out again with the modified billet from which the selected region has been removed. In several iterations of this technique, the optimal preform shape that minimizes the amount of flash without changing the forgeability can be obtained.

화학적 수문곡선 분리기법을 이용한 낙동강 최상류 유역 기저유출량 산정 (Base Flow Estimation in Uppermost Nakdong River Watersheds Using Chemical Hydrological Curve Separation Technique)

  • 김령은;이옥정;최정현;원정은;김상단
    • 한국물환경학회지
    • /
    • 제36권6호
    • /
    • pp.489-499
    • /
    • 2020
  • Effective science-based management of the basin water resources requires an understanding of the characteristics of the streams, such as the baseflow discharge. In this study, the base flow was estimated in the two watersheds with the least artificial factors among the Nakdong River watersheds, as determined using the chemical hydrograph separation technique. The 16-year (2004-2019) discontinuous observed stream flow and electrical conductivity data in the Total Maximum Daily Load (TMDL) monitoring network were extended to continuous daily data using the TANK model and the 7-parameter log-linear model combined with the minimum variance unbiased estimator. The annual base flows at the upper Namgang Dam basin and the upper Nakdong River basin were both analyzed to be about 56% of the total annual flow. The monthly base flow ratio showed a high monthly deviation, as it was found to be higher than 0.9 in the dry season and about 0.46 in the rainy season. This is in line with the prevailing common sense notion that in winter, most of the stream flow is base flow, due to the characteristics of the dry season winter in Korea. It is expected that the chemical-based hydrological separation technique involving TANK and the 7-parameter log-linear models used in this study can help quantify the base flow required for systematic watershed water environment management.

속도 계측형 호흡기류센서 설계를 위한 비균등 샘플링 기법 (Unequal Distance Sampling Technique to Design Velocity-Type Respiratory Air Flow Transducer)

  • 김경아;이태수;차은종
    • 대한의용생체공학회:의공학회지
    • /
    • 제25권5호
    • /
    • pp.351-359
    • /
    • 2004
  • 속도계측형 호흡기류센서는 베르누이 원리에 의해 기류속도를 동압력으로 변환하여 호흡기류를 측정하는 센서로써 다수의 샘플링 구멍을 기류통과면 상에 설치해야 한다. 본 연구에서는 속도 샘플 구명들을 비균등하게 배치시킴으로써 단순하게 균등 배치하는 것보다 훨씬 정확한 기류 계측이 가능함을 이론적으로 입증하였다 컴퓨터 시뮬레이션 결과 기류통과면을 다수의 등면적 링으로 분한하고 각각의 링의 면적을 다시 2등분하는 위치에서 속도를 샘플링함으로써 균등 배치할 경우에 비해 계측오차가 약 1/5로 감소하였다. 또한 충 샘플개수가 4개 이상이면 상대오차 1% 이내의 매우 정확한 기류계측이 가능하였다. 기류 속도분포의 변화에 따른 영향을 비교한 결과 균등 샘플링에 비해 1/2 이하로 둔감하였다. 따라서 본 인구에서 제안하는 비균등 속도샘플링 기법은 속도 계측형 호흡기류센서의 설계시 매우 유용하게 적용될 것으로 판단된다.

흡입력-포화도 조절 기법을 이용한 불포화토의 함수특성곡선에 미치는 간극비 및 순구속압력의 영향 연구 (A Study on Change of Soil-Water Retention Curve with Different Net Confining Pressures and Porosities using a Suction-Saturation Control Technique)

  • 이준용;유찬
    • 한국농공학회논문집
    • /
    • 제54권4호
    • /
    • pp.93-103
    • /
    • 2012
  • A suction-saturation control technique based on flow pump system was developed to investigate hydraulic properties in unsaturated soils. The flow pump system is designed based on the principle of the axis-translation technique and triaxial equipment, and gives the suction-time and suction-saturation curves, the primary relationship needed for interpreting the response of unsaturated soils and link between theory and the material properties in unsaturated soil mechanics. Using the suction-saturation control technique, suction-time relationship and soil-water retention curve (SWRC) during hydraulic hysteresis were investigated with different net confining pressures and porosities. Three types of soils-two sands and a silt were used in this paper. This paper showed the effect of the hysteresis on the SWRC due to different net confining pressures and porosities. This means that a careful decision must be made as to which condition is to be modeled, since the delicate difference of the conditions in physical modeling can cause the different experimental output.

Electrohydrodynamic Analysis of Dielectric Guide Flow Due to Surface Charge Density Effects in Breakdown Region

  • Lee, Ho-Young;Kang, In Man;Lee, Se-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권2호
    • /
    • pp.647-652
    • /
    • 2015
  • A fully coupled finite element analysis (FEA) technique was developed for analyzing the discharge phenomena and dielectric liquid flow while considering surface charge density effects in dielectric flow guidance. In addition, the simulated speed of surface charge propagation was compared and verified with the experimental results shown in the literature. Recently, electrohydrodynamics (EHD) techniques have been widely applied to enhance the cooling performance of electromagnetic systems by utilizing gaseous or liquid media. The main advantage of EHD techniques is the non-contact and low-noise nature of smart control using an electric field. In some cases, flow can be achieved using only a main electric field source. The driving sources in EHD flow are ionization in the breakdown region and ionic dissociation in the sub-breakdown region. Dielectric guidance can be used to enhance the speed of discharge propagation and fluidic flow along the direction of the electric field. To analyze this EHD phenomenon, in this study, the fully coupled FEA was composed of Poisson's equation for an electric field, charge continuity equations in the form of the Nernst-Planck equation for ions, and the Navier-Stokes equation for an incompressible fluidic flow. To develop a generalized numerical technique for various EHD phenomena that considers fluidic flow effects including dielectric flow guidance, we examined the surface charge accumulation on a dielectric surface and ionization, dissociation, and recombination effects.

관내 응축 시 2상유동 단면구조의 가시화 (Visualization of cross-sectional two-phase flow structure during in-tube condensation)

  • ;김형대
    • 한국가시화정보학회지
    • /
    • 제14권2호
    • /
    • pp.18-24
    • /
    • 2016
  • This paper presents an experimental investigation to visualize cross-sectional two-phase flow structure and identify liquid-gas interface for condensation of steam at a low mass flux in a slightly inclined tube using the axial-viewing technique, which permits to look directly into flow during condensation of steam. In this technique, two-phase flow is viewed along the axis of a pipe by locating a high-speed video camera in front of a viewer that is fitted at the outlet of the pipe. A short section of the pipe is illuminated and is recorded through the viewer, which is kept free of liquid by mildly introducing air. Experiments were conducted in a pipe of 19.05 mm in inner diameter at atmospheric pressure. Cross-sectional two-phase flow structure is obtained at a steam mass flux of $2.62kg/m^2s$ as a function of steam quality in the range from 0.5 to 0.9. The results show that stratified-wavy flow is a unique flow pattern observed in the scope of the present study. Condensate film thickness, stratification angle and void fraction were measured from the obtained flow structure images. Finally, heat transfer coefficient was calculated using the measurement data and discussed in comparison with existing correlations.

직접분사식 가솔린 기관에서 흡입유동이 고압 11공 연료분사기의 분무형상에 미치는 영향 (The Effect of the Intake Flow on the Spray Structure of a High Pressure 11-Hole Fuel Injector in a DISI Engine)

  • 김성수
    • 대한기계학회논문집B
    • /
    • 제33권9호
    • /
    • pp.722-727
    • /
    • 2009
  • The effect of the intake flow on the spray structure of a high pressure 11-hole fuel injector were examined in a single cylinder optical direct injection spark ignition (DISI) engine. The effects of injection timing and in-cylinder charge motion were investigated using the 2-dimensional Mie scattering technique. It was confirmed that in the homogeneous charge mode, the in-cylinder swirl charge motion played a major role in the fuel spray distribution during the induction stroke rather than the tumble flow. But, in the stratified charge mode, the effect of the in-cylinder charge was not so large that the injected spray pattern was nearly maintained and the increase of in-cylinder pressure by the upward moving piston reduced the fuel spray penetration.

유동제어 성형기술을 이용한 허브제품의 냉간단조 공정설계 (Process Design of Cold Forged Hub by Flow Control Forming Technique)

  • 박종남;김동환;김병민
    • 한국정밀공학회지
    • /
    • 제19권6호
    • /
    • pp.86-95
    • /
    • 2002
  • This paper suggests the new technology to control metal flow in order to reduce the number of preforming and the machining for the cold forged product with complex geometry. This technology is the combined forming that consists of bulk and sheet forming with double action dies. To analyze the process, finite element simulation has been performed. The proposed technology is applied to hub model that is part of air conditioner clutch. The purpose of this study is to investigate the material now of hub through the relative-velocity control of punch and mandrel using the flow control forming technique.

축열식 저 NOx 연소기의 배기가스 내부 재순환 유동에 대한 연구 (A Study on the Self Flue Gas Recirculating Flow of the Regenerative Low NOx Burner)

  • 김종규;강민욱;윤영빈
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2001년도 제23회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.17-26
    • /
    • 2001
  • Self flue gas recirculation flow is an effective method for low NOx emission in the regenerative low NOx burner. The object of this study is to analyze the self flue gas recirculating flow by varying jet velocity of the combustion air. Fuel and air flow rates are fixed and combustion air jet nozzle diameters are 13, 6.5 and 5mm. The stoichiometric line is obtained from the concentration of the fuel using an acetone PLIF technique. It is found that the self flue gas recirculating flow is entrained into that line using a two color PIV technique. As the jet velocity of combustion air is increased, the flue gas entrainment rate into the stoichiometric line is increased. This result suggests that NOx emission can be reduced due to the effects of flue gas which is lowering the flame temperatures.

  • PDF