• 제목/요약/키워드: Flow System

검색결과 14,894건 처리시간 0.046초

가변 흡기시스템에 의해 유도되는 흡입공기의 유동특성 평가를 위한 새로운 3차원 회전유동 지수에 관한 연구 (A Study on the New 3-D Angular Flow Index for Evaluation of In-Cylinder Bulk Flow Characteristics of the Air Induced by Variable Induction System)

  • 윤정의;남현식;김명환;민선기;심대곤;박병완
    • 한국자동차공학회논문집
    • /
    • 제15권1호
    • /
    • pp.99-105
    • /
    • 2007
  • It is very important to clarify the 3-D angular flow characteristics of in-cylinder bulk motion in the developing process of variable induction system. In-cylinder flow induced by variable induction system is very complex, so we can not describe the in-cylinder bulk flow characteristics using the conventional swirl or tumble coefficient. In this study, we introduced the new 3-D angular flow index, angular flow coefficient($N_B$), for in-cylinder bulk flow characteristics. And also, to confirm the index, we carried out the steady flow rig test for intake port of test engine varying valve lift on the test matrix.

메탈 DPF 시스템 유동특성 연구 (Study on the Flow Characteristics Inside a Metal DPF System)

  • 한철희;전문수
    • 융복합기술연구소 논문집
    • /
    • 제3권1호
    • /
    • pp.31-35
    • /
    • 2013
  • Unsteady fluid dynamics analysis of flow characteristics inside a Metal DPF system is done using a commercial CAE software, CFD-ACE+. The time profiles of both temperature and pressure of exhaust gas are given as initial conditions. It was found that the position of connecting pipes and the numbering of exhaust gases did not affect the flow uniformity. The presence of a DPF resulted in the significant flow nonuniformity effect on the flow characteristics at the inlet of the DPF. Present results can be applied to the selection of optimal geometry that produces uniform flow characteristics inside a DPF system.

  • PDF

유압관로에서 맥동유동 특성에 관한 연구 (The Characteristics of Pulsating Flow in a Hydraulic Pipe)

  • 모양우;유영태;김지화
    • 설비공학논문집
    • /
    • 제13권7호
    • /
    • pp.653-665
    • /
    • 2001
  • The characteristics of the pulsating flow in a hydraulic pipe have been investigated. It is necessary to study the power control of the power transmission system in the landing gear system of aircraft and the design of robots. In this system, the power transmission pipeline is composed of a hydraulic system, and the operating flow is unsteady flow. The wave equation varying with frequency is analyzed in order to investigate the characteristics of unsteady flow in such a pipe. This wave equation involves the propagation coefficient in terns of frequency and viscosity. The theoretical result of this wave equation are compared with experimental result. Each wave equation, varying with the propagation coefficient, is analyzed theoretically. then, a sinusoidal wave generator is built in order to make better sinusoidal waves, and a rectifier is built to eliminate the noise from the hydraulic pump. The theoretical results of the wave equation in the flow of viscous fluid agree well with experimental results.

  • PDF

두 대의 펌프가 병렬로 설치되는 계통에서의 유량 특성 (Flow Rate Characteristics of Two Parallel Pumping System)

  • 박용철;지대영;서경우;윤현기;박정근
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.579-586
    • /
    • 2011
  • During a reactor normal operation, a primary coolant was designed to remove the fission reaction heat of the reactor. When one pump is failure and the other pump shall supply the cooling water to cool the reduced power, it is necessary to estimate how much flow will be supplied to cool the reactor. We carried a flow net work analysis for two parallel pumping system as based on the piping net work of the primary cooling system in HANARO. As result, it is estimated that the flow of one pump increased than the rated flow of the pump below the cavitation critical flow.

  • PDF

카운터밸런스밸브와 차동실린더회로를 포함한 호이스트 유압장치의 최적설계 (Optimal Design of the Hoist Hydraulic System Including the Counter Balance Valve and Differential Cylinder Circuit)

  • 이성래
    • 유공압시스템학회논문집
    • /
    • 제5권1호
    • /
    • pp.13-19
    • /
    • 2008
  • The typical hydraulic system of hoist is composed of a hydraulic supply unit, a directional control valve, counter balance valve, and flow control valves. The flow capacity coefficients of flow control valves should be adjusted so that the hoist is operated at moderate speed and the hydraulic energy loss is minimized. However, it is difficult to adjust the flow coefficients of flow control valves by trial and error for optimal operation. Here, the steady state model of the hoist hydraulic system including the differential cylinder circuit is derived and the optimal flow capacity coefficients of flow control valves are obtained using the complex method that is one kind of constrained direct search method.

  • PDF

디젤엔진의 공기청정기내 압력 및 유동분포에 관한 연구 (Study of Pressure and Flow in the Air-Cleaner of Commercial Vehicle)

  • 류명석;구영곤;김경훈;맹주성
    • 한국자동차공학회논문집
    • /
    • 제5권3호
    • /
    • pp.47-53
    • /
    • 1997
  • The importance of intake system can not be overstressed in the recent heavy duty commercial vehicle design. The basic requirements of intake system are to have less flow resistance and better air cleaning performance which have direct effects on the performance and service life of engine. In order to improve the performance of engine intake system, the flow phenomena in the intake system should be fully understood. With readily availble CFD code, the numerical analysis becomes the more reliable tools for flow optimization in recent design work. In this research, flow field in the intake system was analyzed by STAR-CD, the 3-D computational fluid dynamics code. Especially, the flow inside of air cleaner was thoroughly analyzed. Pressure distribution and velocity profile in the air cleaner and intake duct was obtained. Having the dust seperated from incoming air at the expense of less pressure drop is the ultimate goal for the research.

  • PDF

The Implementation of Storage Type Power Flow Controller using Battery Storage

  • Leung, K.K.;Sutanto, D.
    • Journal of Power Electronics
    • /
    • 제1권2호
    • /
    • pp.99-106
    • /
    • 2001
  • This paper describes the implementation of a Storage Power Flow Controller (SPFC) connected to the grid which can provide concomitant benefits associated with a Unified Power Flow Controller while at the same time providing several other very important benefits to power system operation such as, load leveling dynamic voltage stability inprovement, harmonic compensation and power factor correction. This Storage power Flow Controller (SPFC) was implemented using real time signal processors, three-phase inverter(s) and battery bank which can provide improved power system operation and control, added system security and reduced power system losses.

  • PDF

덕트형상에 따른 동축반전 로터블레이드 주위의 전산유동해석 (Computational Flow Analysis around Coaxial Rotor Blades with Various Ducts)

  • 김수연;최종욱;김성초
    • 한국가시화정보학회지
    • /
    • 제8권2호
    • /
    • pp.23-30
    • /
    • 2010
  • Regarding the aircrafts with a rotor blade system, the miniaturization of them is limited due to the rotor blade length and the tail rotor system. To miniaturize an aircraft, an equipment is required that increases thrust and also shortens the length of the rotor blade. The present study will conduct the flow analysis for miniaturizing the aircraft by applying a duct to the coaxial rotor blade system without tail rotor. First, the verification on the calculated results was conducted through the computational flow analysis on the coaxial rotor blade system without a duct. Then, the flow analysis for the coaxial rotor blade systems was performed including Ka-60 duct, Single duct, Twin duct, and Double duct, respectively. From the numerical results, the thrust coefficient appeared higher with the duct than without a duct for the coaxial rotor blade system. Especially, in the case of Double duct, the thrust was improved due to the increase of incoming flow and the extension of the wake area. These results will be used as the basic concepts for miniaturizing the aircraft with the rotor blade system. The flow analysis on the coaxial rotor blade system including the fuselage remains as a future work.

물받이를 이용한 유수발전장치의 설계 및 구현 (Design and Implementation of Fluid Flow Generation System by using Water Captures)

  • 손영대;정현석
    • 전기학회논문지
    • /
    • 제61권3호
    • /
    • pp.413-421
    • /
    • 2012
  • This paper proposes the design and implementation of fluid flow generation system by using polypropylene(PP) water capture, which harvests electric energy from the kinetic energy of tidal current or water flow and drives the desired load, and applies it to the discharge drain of Hadong thermal power plant. This experimental system is composed of water captures, driving wheel, gear trains, 10[kW] synchronous generator, and three phase rectifying circuit which drives lamp load for test. The proposed water capturing system which is composed of water captures, rope and driving wheel, rotates as caterpillar according to water flow. This system is very easy to manufacture and more economical than another type of tidal current turbines such as conventional propeller and helical type. Also, we estimated the available fluid flow energy that can be extracted from the cooling water in discharge drain based on drain's cross-sectional area. Therefore, this paper confirms the validity of proposed fluid flow generation system with water captures and the possibility of its application for renewable energy generation in discharge drain of thermal power plant, from the obtained performance characteristic of this energy conversion system.

장기 안정성을 고려한 경질유 유량표준장치 불확도 평가 (Long Term Stability of Uncertainty Analysis of Light Oil Elow Standard System)

  • 임기원;최종오
    • 대한기계학회논문집B
    • /
    • 제29권10호
    • /
    • pp.1130-1138
    • /
    • 2005
  • A national standard system for the petroleum field has been developed to calibrate and test the oil flow meters in Korea. The operating system and the uncertainty of the system were evaluated by the peer reviewers of foreign national metrology institutes in 2002. Since the characteristics of the system might be changed by time, the uncertainty of the system is reevaluated with the consideration of the long term stability of the system. It is found that the system has a relative expanded uncertainty of 0.048 $\%$ in the range of $15\~120\;m^3/h$. According to the uncertainty budget, the uncertainties of the fluid density and the final mass measurement, which are temperature dependent, contribute about $94\%$ of the total uncertainty in the oil flow standard system