• Title/Summary/Keyword: Flow System

Search Result 14,975, Processing Time 0.048 seconds

Effect of Flare Angle in Counter-Rotating Swirler on Swirling Flow (동축 반전 스월러의 플레어 각도변화가 스월러 유동에 미치는 영향 연구)

  • Kim, Taek Hyun;Kim, Sung Don;Jin, Yu In;Min, Seong Ki
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.1
    • /
    • pp.31-37
    • /
    • 2016
  • Swirler generates the overall swirling flow in the combustion chamber and this swirling flow governs the flame stability and enhances fuel atomization. This paper deals with the flare angle effects on flow streamlines, recirculation zone, Central Toroidal Recirculation Zone(CTRZ) and Corner Recirculation Zone(CRZ) in the model combustion chamber using counter-rotating swirler. 2D PIV system was employed to obtain the velocity components and test condition was obtained using Reynolds Analogy equivalent to air test. We observed transitional flow patterns of flare angle increased. The obtained results show that the flare angle controls the behavior of Recirculation zone, Central Toroidal Recirculation Zone and Corner Recirculation Zone.

Ground Speed Control of a Direct Injection Sprayer

  • Koo, T.M.;Sumner, H.R.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.500-510
    • /
    • 1996
  • A Direct injection -mixing total -flow -control sprayer was developed and evaluated . The system provided precise application rates and minimized operator exposure to chemicals as well as providing a possibility for recycling container so f unused chemicals that can causes environmental contamination. Chemicals were metered and injected proportionally to the diluent flow rate to provide constant concentrations. The main diluent flow was varied in response to changes in travel speed. Experimental variables of the sprayer were the control interval, the sensitivity of flow regulating valve, the tolerance of control object and the sensitivity of the injection pump system. The optimal performance of the flow control system was with an average response time of 8.5 sec at an absolute steady state of error of 0.067 L/min (0.8% of flow rate). The average response time of the injection rate was -0.53 sec and the coefficient of variation (CV) of concentration was 3.2%.

  • PDF

A study on coupling effect during lifting (다수 캐비티 사출금형에서 충전 불균형 원인 분석 및 스크류 런너 디자인)

  • Kang, Min-A;Kim, Hae-Yeon;Lyu, Min-Young
    • 한국금형공학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.155-158
    • /
    • 2008
  • Flow imbalance among the cavities was often observed in multi-cavity mold. The flow imbalance affects on the dimensions and physical properties of molded articles. First of all, the origin of flow imbalance is geometrical imbalance of delivery system. However, even the geometry of delivery system is balanced the cavity imbalance is being developed. This comes from the temperature distribution in the cross-section of runner, which is affected by the operational conditions. In this study, experimental study of flow imbalance has been conducted for various injection speeds. This study also suggests new runner design to eliminate flow imbalance in multi-cavity injection mold. Simulation and experimental results showed suggested new designed runner could eliminate or reduce flow imbalance in multi-cavity injection mold.

  • PDF

Assisted Flow Rate Characteristics in Hydraulic Power Steering System (유압식 파워 스티어링 시스템의 어시스트 유량 특성)

  • Lee, Byung-Rim;Ryu, Sang-Woock;You, Chung-Jun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.58-63
    • /
    • 2009
  • Flow rate of the power steering oil pump is affected by oil temperature, engine rpm and pressure of pump. In this paper, considering those conditions, approximate model expressed by flow rate characteristics between hydraulic power steering oil pump and steering gear is proposed. Oil pump displacement is considered to be 9.6cc/rev. which is adapted to mid size car. Flow rate of the oil pump is predicted from the proposed model and compared with experimental data. And catch-up is also predicted in each steering wheel speed and is compared with experimental results.

The Effect of Partial Blockage of Flow Passage to Performance Change of a Liquid Rocket Engine (유로 단면 부분 폐쇄가 액체로켓엔진 성능 변화에 미치는 영향)

  • Cho, Won Kook
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.4
    • /
    • pp.67-72
    • /
    • 2015
  • The analysis has been performed on the blockage effect at the propellant flow passage in a liquid rocket engine. This simulates an example of emergency situation where flow passage is partially blocked. The analysis method has been validated by predicting the pump head and flow rate within 1% precision against the measured data of turbopump-gas generator coupled test. When the oxidizer passage is reduced it is predicted that the mixture ratio decreases, the oxidizer pump head increases and the gas generator pressure increases. When the fuel passage is reduced it is predicted that the mixture ratio increases, fuel flow rate decreases and the fuel pump head increases.

An Experimental Study on Engine Cooling System Improvement (엔진 냉각 시스템 개선에 관한 실험적 연구)

  • Chon, M.S.;Hwang, Y.H.
    • Journal of ILASS-Korea
    • /
    • v.9 no.4
    • /
    • pp.77-82
    • /
    • 2004
  • This paper describes the improvement of engine cooling system. To improve engine cooling performance, the authors approached in two ways. One is to increase water pump performance, changing of impeller shape and lightening of material were carried out. The second one is cooling efficiency rise, which were investigated with head gasket coolant flow passage optimization with flow visualization technique. The test results show that water pump performance was increased effectively, reduction of pump drive torque, and increase of pump flow-rate and pressure rise. Gasket hole pattern optimization test results represent an optimized head coolant flow which stands cross flow from exhaust to intake port side and small vortex were removed.

  • PDF

Development of Flow Control Valves for Hot Water Distribution Manifolds (온수분배기용 유량제어밸브의 개발)

  • Kwon, Woo-Chul;Yoon, Joon-Yong;Yoo, Sun-Hak
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.4
    • /
    • pp.11-17
    • /
    • 2010
  • The developed control valves, installed on the hot water distribution manifolds for the floor heating system, consist of the balancing valves and the shut-off valves. The balancing valve was designed to improve the flow control performance and to reduce the noise emitted from the valve by modification of the general V port. The port of the shut-off valve was designed with two ceramic plates, working by rotating upper plate, to improve the duration and to reduce the noise. For the evaluation of the new valves, the flow rate was measured and noise level test was carried out. The test results showed that the error of the flow rate accuracy test for the flow balance of each manifold circuit was less than ${\pm}3%$ and the noise level was less than 35 dB(A).

Development of a Simulation Method of Surge Transient Flow Phenomena in a Multistage Axial Flow Compressor and Duct System

  • Yamaguchi, Nobuyuki
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.4
    • /
    • pp.189-199
    • /
    • 2013
  • A practical method of surge simulation in a system of a high-pressure-ratio multistage axial flow compressor and ducts, named SRGTRAN, is described about the principal procedures and the details. The code is constructed on the basis of one-dimensional stage-by-stage modeling and application of fundamental equations of mass, momentum, and energy. An example of analytical result on surge behaviors is included as an experimental verification. It will enable to examine the transient flow phenomena caused by possible compressor surges and their influences on the system components in plant systems including high-pressure-ratio axial compressors or gas turbines.

Runner Design for Filling Balance in Multi-cavity Injection Mold (다수 캐비티 사출금형에서 충전 균형을 위한 런너의 설계)

  • Kang, M.A.;Lyu, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.329-332
    • /
    • 2008
  • Flow imbalance among the cavities was often observed in multi-cavity mold. The flow imbalance affects on the dimensions and physical properties of melded articles. First of all, the origin of flow imbalance is geometrical imbalance of delivery system. However, even the geometry of delivery system is balanced the cavity imbalance is being developed. This comes from the temperature distribution in the cross-section of runner, which is affected by the operational conditions. In this study, experimental study of flow imbalance has been conducted for various injection speeds. This study also suggests new runner design to eliminate flow imbalance in multi-cavity injection mold. Simulation and experimental results showed suggested new designed runner could eliminate or reduce flow imbalance in multi-cavity injection mold.

  • PDF

Developing a Data Model of Product Manufacturing Flow for an IC Packaging WIP System

  • Lin, Long-Chin;Chen, Wen-Chin;Sun, Chin-Huang;Tsai, Chih-Hung
    • International Journal of Quality Innovation
    • /
    • v.6 no.3
    • /
    • pp.70-94
    • /
    • 2005
  • The IC packaging industry heavily relies on shop floor information, necessitating the development of a model to flexibly define shop floor information and timely handle manufacturing data. This study presents a novel data model of product manufacturing flow to define shop floor information to effectively respond to accelerated developments in IC package industry. The proposed data model consists of four modules: operation template setup, general process setup, enhanced bill of manufacture (EBOMfr) setup, and work-order process setup. The data model can flexibly define the required shop floor information and decision rules for shop floor product manufacturing flow, allowing one to easily adopt changes of the product and on the shop floor. However, to handle floor dynamics of the IC packaging industry, this work also proposes a WIP (i.e. work-in-process) system for monitoring and controlling the product manufacturing flow on the shop floor. The WIP system integrates the data model with a WIP execution module. Furthermore, an illustrative example, the MIRL WIP System, developed by Mechanical Industrial Research Laboratories of Industrial Technology Research Institute, demonstrates the effectiveness of the proposed model.