• 제목/요약/키워드: Flow System

검색결과 14,894건 처리시간 0.043초

주덕트의 단면적 변화가 분지덕트의 유량분배에 미치는 영향 (Effect of a Variation of a Main Duct Area on Flow Distribution of Each Branch)

  • 이재호;김범준;조대진;윤석주
    • 설비공학논문집
    • /
    • 제17권4호
    • /
    • pp.386-395
    • /
    • 2005
  • With the development of a living standard, the importance of indoor air conditioning system in all kinds of buildings and vehicles has increased. A lot of researches on energy losses in a duct and various kinds of flow pattern in branches or junctions have been carried out over many years, because the primary object of a duct system used in HVAC is to provide equal flow rate in the interior of each room by minimizing pressure drop. In this study, to get equal flow distribution in each branch, a blockage is applied to the rectangular duct system. The flow analysis for flow distribution of a rectangular duct with two branches was performed by CFD. By using SIMPLE algorithm and finite volume method, flow analysis is performed in the case of 3-D, incompressible, turbulent flow. Also, the standard $k-{\varepsilon}$ model and wall function method were used for analysis of turbulent fluid flow. The distribution diagrams of static pressure, velocity vector, turbulent energy and kinetic energy in accordance with variation of Reynolds number and blockages location in a rectangular duct show that flow distribution at duct outlets is improved by a blockage. In this rectangular duct system, mean velocity and flow rate distribution in two branch outlets are nearly constant regardless of variation of Reynolds number, and a flow pattern of the internal duct has a same tendency as well.

콤플렉스법에 의한 호이스트 유압회로 유량제어밸브의 최적유량계수 설계 (Design of Optimal Capacity Coefficients of Flow Control Valves in the Hoist Hydraulic System Using the Complex Method)

  • 이성래
    • 유공압시스템학회논문집
    • /
    • 제4권1호
    • /
    • pp.1-6
    • /
    • 2007
  • The typical hydraulic system of hoist is composed of a hydraulic supply unit, a directional control valve, two pilot operated check valves, two flow control valves. The capacity coefficients of flow control valves should be adjusted for the hoist to operate at moderate speed and minimize the hydraulic energy loss. However, it is difficult to adjust the four capacity coefficients of flow control valves by trial and error for optimal operation. The steady state model of the hoist hydraulic system is derived and the optimal capacity coefficients of flow control valves are obtained using the complex method that is one kind of constrained direct search method.

  • PDF

Load Flow Calculation and Short Circuit Fault Transients in AC Electrified Railways

  • Hosseini, Seyed Hossein;Shahnia, Farhad
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2203-2206
    • /
    • 2005
  • A load flow and short circuit fault simulation of AC electrified railway distribution systems is presented with DIgSILENT PowerFactory software. Load flow of electrified railways distribution system with concerning multi train lines and dynamic characteristics of train load is studied for different time laps. The dynamic characteristics of train load in starting and braking conditions with different starting and stopping times and its moving positions makes the load flow complicated so there is a great need in studying the effects of electrified railways on load flow. Short circuit fault transients is also studied and simulated for both power system or traction distribution system and their effects on the operation of the train sets is investigated.

  • PDF

멀티형 공조시스템의 증발기 과열도에 관한 실험적 연구 및 냉매유량 제어 (Experimental Study of the Superheat and Control of the Refrigerant Flow-Rate in the Evaporator of a Multi-type Air-Conditioning System)

  • 김태섭;홍금식;손현철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.221-221
    • /
    • 2000
  • The heat exchange part in a modern multi-type air-conditioning system employs multiple-pass heat exchangers. The heat-transfer performance of an each pass in such an exchanger depends strongly on the length of the two-phase region and the mass flow of the refrigerant. The total length and diameters of the pipes, the exit conditions, and the arrangement of each pass as well as the geometrical shape of the distributor at the branching sections are considered to be major factors affecting the heat-transfer performance. The refrigerant commonly used in these systems is HCFC-22. The two objectives of this paper are to investigate the characteristics of the refrigerant flow rate and the superheat in the evaporator of a multi-type air-conditioning system for a single or simultaneous operating conditions and to control the superheat and the refrigerant flow rate of the evaporator.

  • PDF

Single-Cycle 기법을 이용한 포핏밸브형 2-행정기관의 RSSV 형상에 따른 소기효율 측정에 관한 연구 (A Study on the Scavenging Efficiency Evaluation for the RSSV Configuration of 2-Stroke Engine with Popet Valve Type Using Single-Cycle Method)

  • 이진욱;강건용;정용일;이주헌;박정규
    • 한국자동차공학회논문집
    • /
    • 제5권2호
    • /
    • pp.69-79
    • /
    • 1997
  • This paper deals with the measurement and analysis on the scavenging performance of the oppet-valve type two-stroke engine with different shroud system. The scavenging flow characteristics is investigated by flow visualization under steady condition, in which a dye is introduced into single-cycle method using the difference of specific gravity between two working fluids is used to evaluate the scavenging efficiency and the trapping efficiency. The 90° shroud system was found to be the highest efficiency system through both flow visualization and single-cycle test, as well as the shroud system to generally be efficient for reducing a short-circuiting flow during scavenging process in a two-stoke engine.

  • PDF

지중 순환수 유량 변화에 따른 지열원 히트펌프 시스템의 성능 특성 연구 (Influence of the Secondary Fluid Flow Rate on the Performance of a GSHP System)

  • 이준엽;정진택;우정선;최종민
    • 설비공학논문집
    • /
    • 제22권10호
    • /
    • pp.649-656
    • /
    • 2010
  • The aim of this study is to investigate the influence of the secondary fluid flow rate through GLHX on a GSHP system with vertical single U-tube type GLHXs. The COP of a GSHP system with large flow rate was lower than it with small flow rate due to large power consumption of ground loop circulating pump. It is suggested that the heat pump unit with high COP and low flow rate through the GLHX have to be selected in order to enhance the performance of the system and reduce the length of GLHX.

압축성유체 유량계측장치 설계 및 제작 (Design and Building of Flow-rate Measurement Apparatus for Compressible Fluid)

  • 지상원;장지성
    • 드라이브 ㆍ 컨트롤
    • /
    • 제10권4호
    • /
    • pp.29-33
    • /
    • 2013
  • Pneumatic system is widely applied in various industry because it have a many advantage(low cost, high safety, etc..). For design of pneumatic system, accurate flow measurement is required. In this study, compressible fluid flow measurement apparatus was designed and built. It uses an isothermal chamber that can approximate isothermal condition. Therefore, it can be measured for flow-rate using pressure response of isothermal chamber. As a result, this apparatus can be measured for sonic conductance and critical pressure ratio of pneumatic components and it required less time and energy than conventional flow meter. The effectiveness of the designed apparatus is proved by experimental result.

복합 덕트시스템의 유량분배에 관한 1차원 해석의 적합성 (Adaptability of one-dimensional analysis for the flow distribution of a complex duct system)

  • 이승철;이재헌
    • 설비공학논문집
    • /
    • 제11권5호
    • /
    • pp.579-587
    • /
    • 1999
  • The flow distribution characteristics in a complex duct system have been investigated in this paper by three means, namely experimental measurement, numerical simulation and the Extended T-method analysis. While the exit flow rates predicted by the three-dimensional CFD calculation and those given by the experiment show a close agreement, the results from the one-dimensional Extended T-method are found to differ from the experiment by -22.2% to 26.3% for the various exits. These discrepancies may be attributed to the underlying limitation concerning the fitting loss coefficients, which assume that the flow in front of the fittings is fully developed. It is proposed that, in order to analyse the three-dimensional flow distributions in a complex duct system by one-dimensional analysis such as the Extended T-method, further Improvements to the fitting loss coefficients should be made.

  • PDF

Simulation System for Earthmoving Operation with Traffic Flow

  • Kyoungmin Kim;Kyong Ju Kim;Hyeon Jeong Cho;Sang Kyu Lee
    • 국제학술발표논문집
    • /
    • The 3th International Conference on Construction Engineering and Project Management
    • /
    • pp.1359-1363
    • /
    • 2009
  • The object of this research is to develop a simulation system for earthmoving operations in consideration of the impact of congestion in-between equipment and existing traffic flow around the site. The congestion in-between equipment and traffic flow affect work productivity. The conventional discrete event simulation, however, has limitations in simulating the flow of construction equipment. To consider the impact of congestion in-between equipment and existing traffic flow, in this paper, a multi-agent based simulation model that can realize characteristics of truck behavior more accurately to consider the impact of congestion was proposed. In this simulation model, multiple agents can identify environmental changes and adapt themselves to the new environment. This modeling approach is a better choice for this problem since it describes behavioral characteristics of each agent by sensing changes in dynamic surroundings. This study suggests a detailed system design of the multi-agent based simulation system.

  • PDF

가변유량 밸런싱밸브를 적용한 온수 난방시스템의 유체역학적 성능 평가 (Fluid Dynamic Performance in a Hot-Water Heating System with a Variable-Flow-Rate Balancing Valve)

  • 허전;이석종;성재용;이명호
    • 설비공학논문집
    • /
    • 제19권8호
    • /
    • pp.577-584
    • /
    • 2007
  • A variable-flow-rate balancing valve has been developed and optimized to apply to a distributor in a hot-water heating system. Fluid dynamic performance of the system was evaluated by comparing the results with the previous pressure difference control valve (PDCV) system. In view of the variations of pressure drop and flow rate according to the sequential closing of the control valves, the present system which is named "smart system distributor", is very stable without a certain flow rate concentration. The level of pressure drop variation is also low as compared with the previous system with a PDCV. In view of the occurrence of cavitation, the present system is quite superior to the previous system because the instantaneous pressures at all sections are much higher than the vapor pressure. On the other hand, the previous system has a possibility of cavitation when one or more control valves are closed.