• Title/Summary/Keyword: Flow Structures

Search Result 2,218, Processing Time 0.028 seconds

A Systematic Study on Maintenance of R/C Structures (콘크리트 구조물의 유지관리에 관한 체계적 연구)

  • 심종성;문일환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1989.10a
    • /
    • pp.39-42
    • /
    • 1989
  • This paper suggests a systematic procedure for maintenance of reinforced concrete (R/C) structures. In this paper the deteriorations of R/C structures are classified by eleven causes and diagonistic techniques are devided into six major steps. The suggested diagonisis steps are summarized in the flow chart and it would be helpful to develop the expert system for maintenance of R/C structures.

  • PDF

Quantitative and qualitative analysis of the flow field development through T99 draft tube caused by optimized inlet velocity profiles

  • Galvan, Sergio;Reggio, Marcelo;Guibault, Francois;Solorio, Gildardo
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.4
    • /
    • pp.283-293
    • /
    • 2015
  • The effect of the inlet swirling flow in a hydraulic turbine draft tube is a very complex phenomenon, which has been extensively investigated both theoretically and experimentally. In fact, the finding of the optimal flow distribution at the draft tube inlet in order to get the best performance has remained a challenge. Thus, attempting to answer this question, it was assumed that through an automatic optimization process a Genetic Algorithm would be able to manage a parameterized inlet velocity profile in order to achieve the best flow field for a particular draft tube. As a result of the optimization process, it was possible to obtain different draft-tube flow structures generated by the automatic manipulation of parameterized inlet velocity profiles. Thus, this work develops a qualitative and quantitative analysis of these new draft tube flow field structures provoked by the redesigned inlet velocity profiles. The comparisons among the different flow fields obtained clearly illustrate the importance of the flow uniformity at the end of the conduit. Another important aspect has been the elimination of the re-circulating flow area which used to promote an adverse pressure gradient in the cone, deteriorating the pressure recovery effect. Thanks to the evolutionary optimization strategy, it has been possible to demonstrate that the optimized inlet velocity profile can suppress or mitigate, at least numerically, the undesirable draft tube flow characteristics. Finally, since there is only a single swirl number for which the objective function has been minimized, the energy loss factor might be slightly affected by the flow rate if the same relation of the axial-tangential velocity components is maintained, which makes it possible to scale the inlet velocity field to different operating points.

Multi-Physics Simulations of Fluidelastic Instability for Tube Bundles in Cross-Flow (유체-구조 상호작용을 적용한 튜브다발의 유체탄성불안정성 과도적 전산해석)

  • Lee, Min-Hyung;Kim, Yong-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.2
    • /
    • pp.174-180
    • /
    • 2004
  • Failure of tube bundles due to excessive flow-induced vibrations continues to affect the performance of nuclear power plant Early experimental studies concentrated on rigid structures and later investigators dealt with elastic structures because of their importance in many engineering fields. On the other hand, much less numerical work has been carried out, because of the numerical complexity associated with the problem. Conventional approaches usually decoupled the flow solution from the structural problem. The present numerical study proposes the methodology in analyzing the fluidelastic instability occurring in tube bundles by coupling the Computational fluid Dynamics (C%) with the tube equation of motions. The motion of the structures is modeled by a spring-damper-mass system that allows transnational motion in two directions (a two-degree-of-freedom system). The fluid motion and the cylinder response are solved in an iterative way, so that the interaction between the fluid and the structure can be accounted for property. The aim of the present work is to predict the fluidelstic instability of tube bundles and the associated phenomena, such as the response of the cylinder, the unsteady lift and drag on the cylinder, the vortex shedding frequency.

A Computational Investigation on Airflow Structures Inside a Ball Bearing at High-Speed Rotation (고속 회전하는 볼베어링 내 공기 유동구조 수치해석 연구)

  • Kim, Dong-Joo;Oh, Il-Suk;Hong, Seong-Wook;Kim, Kyoung-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.6
    • /
    • pp.745-750
    • /
    • 2011
  • In a hope to better understand the flow and convective heat transfer characteristics inside a ball bearing, air flow between the rolling elements and raceways at high speed bearing rotation is numerically investigated using a simplified inner geometry of bearing and a CFD technique. Flow simulation results reveal the pressure distribution of airflow and the shear stress distribution on the ball surface, of which nonuniformity becomes significant with the increasing rotational speed. Also, the local point of maximum shear stress coincides with the stagnation flow area on the surface of rolling elements. A complex pattern of three-dimensional vortex structures is found in the air flow due to the relative motion of bearing elements and three different types of vortex pairs exist around the rotating and orbiting rolling elements.

Vertical Convection Flow around V-Shaped Structures in Uniform Current (조류 중에 놓인 V-형 구조물 주위의 연직순환류에 대한 연구)

  • Yang, Chan-Kyu;Hong, Keyyong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.4
    • /
    • pp.148-157
    • /
    • 1997
  • In this paper, the flow around a V-shaped plate positioned against horizontal flow is numerically simulated by using finite volume method and experimentally visualized in two dimensional tank by dye injection method. The upwelling flow artificially induced by V-shaped plate mixes the stratified stagnant flow. It can be applied to mitigate the eutrophication and stratification of sea in the vicinity of offshore structures.

  • PDF

Supersonic and Subsonic Projectile Overtaking Problems in Muzzle Gun Applications

  • Gopalapillai, Rajesh;Nagdewe, Suryakant;Kim, Heuy-Dong;Setoguchi, Toshiaki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.711-722
    • /
    • 2008
  • A projectile when passes through a moving shock wave, experiences drastic changes in the aerodynamic forces as it moves from a high-pressure region to a low pressure region. These sudden changes in the forces are attributed to the wave structures produced by the projectile-flow field interaction, and are responsible for destabilizing the trajectory of the projectile. These flow fields are usually encountered in the vicinity of the launch tube exit of a ballistic range facility, thrusters, retro-rocket firings, silo injections, missile firing ballistics, etc. In earlier works, projectile was assumed in a steady flow field when the computations start and the blast wave maintains a constant strength. However, in real situations, the projectile produces transient effects in the flow field which have a deterministic effect on the overtaking process. In the present work, the overtaking problem encountered in the near-field of muzzle guns is investigated for several projectile Mach numbers. Computations have been carried out using a chimera mesh scheme. The results show that, the unsteady wave structures are completely different from that of the steady flow field where the blast wave maintains a constant strength, and the supersonic and subsonic overtaking conditions cannot be distinguished by identifying the projectile bow shock wave only.

  • PDF

A Study on the Variation of Streambeds Surrounding the Piers according to the Established Patterns of Hydraulic Structures (수공구조물 설치 형태에 따른 교각주변의 하상변동에 관한 연구)

  • Ahn, Seung-Seop;Moon, Sang-Cheol;Lee, Hyo-Jung;Song, In-Ryeol
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.714-717
    • /
    • 2009
  • As part of a new riverside development project, various types of bridges and covering bridges were constructed in natural river estuary; and these structures got in the way of the flow of the river, which has resulted in a topographical change in natural river estuary, decrease in the gross sectional area of flow, and rise of water level. As a result, surrounding areas are suffering from damages due to overflowing of river over the bank. This study was designed to provide basic data for efficient design of structures, by examining resistance and characteristics in the surrounding areas of bridges based on changes in the span length ratio.

  • PDF

A transport model for high-frequency vibrational power flows in coupled heterogeneous structures

  • Savin, Eric
    • Interaction and multiscale mechanics
    • /
    • v.1 no.1
    • /
    • pp.53-81
    • /
    • 2008
  • The theory of microlocal analysis of hyperbolic partial differential equations shows that the energy density associated to their high-frequency solutions satisfies transport equations, or radiative transfer equations for randomly heterogeneous materials with correlation lengths comparable to the (small) wavelength. The main limitation to the existing developments is the consideration of boundary or interface conditions for the energy and power flow densities. This paper deals with the high-frequency transport regime in coupled heterogeneous structures. An analytical model for the derivation of high-frequency power flow reflection/transmission coefficients at a beam or a plate junction is proposed. These results may be used in subsequent computations to solve numerically the transport equations for coupled systems, including interface conditions. Applications of this research concern the prediction of the transient response of slender structures impacted by acoustic or mechanical shocks.

The near wake of three circular cylinders in an equilateral triangular arrangement at a low Reynolds number Re=100

  • Bai, Honglei;Lin, Yufeng;Alam, Md. Mahbub
    • Wind and Structures
    • /
    • v.30 no.5
    • /
    • pp.451-463
    • /
    • 2020
  • Two-dimensional numerical simulations are conducted at a low Reynolds number Re = 100 to investigate the near wake of three identical circular cylinders that are arranged in an equilateral triangular configuration. The incident angle of the three-cylinder configuration with respect to incoming flow is varied from θ = 0° to 60°, while the spacing between adjacent cylinders (L) covers a wide range of L/D = 1.25-7.0, where D is diameter of the cylinder. Typical flow structures in the near wake of the three-cylinder configuration are identified, including a single Karman vortex street, bistable flip-flopping near wake, anti-phase and/or in-phase vortex shedding, shear layer reattachment, and vortex impingement, depending on the configuration (L/D, θ). The behavior of Strouhal number (St) is discussed in detail, echoing the distinct structures of near wake. Furthermore, fluid forces on the individual cylinders are examined, which, though highly depending on (L/D, θ), exhibit a close correlation to the near wake behavior.

Turbulent Wake Structure Behind a Spinning Circular Cylinder (회전하는 원주후류의 2차원 난류구조)

  • 부정숙;김경천;류병남
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.16 no.4
    • /
    • pp.39-49
    • /
    • 1992
  • The coherent wake structures behind a spinning cylinder placed in a uniform flow were experimentally investigated by means of phase averaging technique. With a fixed cylinder Reynolds number (Re=6,600), the conditionally sampled velocity vectors were obtained at a section of 3.0 and 10 diameters behind the cylinder for the range of spin parameter S(the ratio of the peripheral velocity to that of the uniform flow) 0 to 2. Spectral analysis and vorticity contours of the velocity data show that up to S=1.2, a Karman vortex street exists within the wake, however, the coherent structures become obscure and their vorticity strength decreases as S increase. Beyond S=1.2, a distinct vortex shedding frequency no longer exists, furthermore coherent structures disappear when S is over 1.6.

  • PDF