• Title/Summary/Keyword: Flow Strain

Search Result 867, Processing Time 0.027 seconds

Strain hardening behavior of linear polymer melts

  • Hong Joung Sook;Ahn Kyung Hyun;Lee Seung Jong
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.4
    • /
    • pp.213-218
    • /
    • 2004
  • Linear high-density polyethylene (PE) was controlled to induce strain-hardening behavior by introducing a small amount of second component with an anisotropic structure. In order to form an anisotropic structure in the PE matrix, the polymer was extruded through a twin-screw extruder, and the structure was controlled by varying the extrusion conditions. Depending on conditions, the second component formed a film, thread and droplet structure. If the second component was kept rigid, the morphology evolution could be delayed and the second component could maintain its film or thread structure without further relaxation. In par­ticular, the second component of the thread structure made a physical network and gave rise to remarkable strain hardening behavior under high extension. This study suggests a new method that induces strain hard­ening behavior by introducing a physically networked second component into the linear polymer melt. This result is anticipated to improve the processibility of linear polymers especially when extensional flow is dominant, and to contribute to our understanding of strain hardening behavior.

Characteristics of Culture for Emulsive Biosurfactant-Strain from the Soil (토양으로부터 분리한 유화성 생체계면활성 균주의 배양 특성)

  • 임윤택;윤용수
    • Journal of environmental and Sanitary engineering
    • /
    • v.11 no.3
    • /
    • pp.69-77
    • /
    • 1996
  • The result of isolated and selected to the strain having the emulsifying activity from soil's strain the strain was identified as Candida genus. The strain was investigated with culture condition at pH culture temperature, flow rate of air, strring rate etc., and physicochemical properties of the biosurfactant were examined. The optimum composition of medium for a strain cultivation were obtained as follow : glucose ; 100g/L, yeast extract ; 10g/L, urea ; 1.0g/L, KH$_{2}$PO$_{4}$ ; 50mg/L, MgSO$_{4}$ ; 500mg/L, and the op condition of cultivation was as follow : pH ; 3.0, temperatlue ; 24$\circ $C, strring rate ; 40rpm. The maximum yield of biosurfactant was obtained by pH ; 3.0-3.5, and temperature ; 25$\circ $C. The degree of emulsification of syntesized biosurfactant was increased clearly by increasing concentration of biosurfactant and it's stability was maintained for a long time. The surface tension of biosurfactant was varied with pH, especially it was showed that the surface tension was high at acidic pH.

  • PDF

Fabrication of Tantalum Nitride Thin-Film as High-temperature Strain Gauges (고온 스트레인 게이지용 질화탄탈박막의 제작)

  • 김재민;최성규;남효덕;정귀상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.97-100
    • /
    • 2001
  • This paper presents the characteristics of Ta-N thin-film strain gauges as high-temperature strain gauges, which were deposited on Si substrate by DC reactive magnetron sputtering in an argon-nitrogen atmosphere(Ar-(4∼16 %)N$_2$). These films were annealed for 1 hour in 2x10$\^$-6/ Torr vaccum furnace range 500∼1000$^{\circ}C$. The optimized conditions of Ta-N thin-film strain gauges were annealing condition(900$^{\circ}C$, 1 hr.) in 8% N$_2$ gas flow ratio deposition atmosphere. Under optimum conditions, the Ta-N thin-films for strain gauges is obtained a high resistivity, $\rho$=768.93 ${\mu}$Ω cm, a low temperature coefficient of resistance, TCR=-84 ppm/$^{\circ}C$ and a high temporal stability with a good longitudinal gauge factor, GF=4.12.

  • PDF

Unsteady Ignition in the Pulse Combustor with Counter Jet Flows (대향분출류가 있는 맥동연소기의 비정상 점화현상)

  • 이창진
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.1 no.1
    • /
    • pp.64-72
    • /
    • 1997
  • An analytical study has been performed to investigate the unsteady ignition characteristics of pulse combustion. In many combustion applications, strain rate of the flow can significantly affect the combustion features; ignition, extinction, and reignition. In the pulse combustion, two jets (hot combustion gases and fresh mixtures) coming from the opposite side of the combustor will collide in the combustor forming a stagnation region where the chemical reaction is suppressed by the strain rate until this becomes below the critical value. In this research, the method of large activation energy asymptotic is adopted with one step irreversible kinetics to examine the ignition response to the periodic variation of the strain rate of flow. The results show the variation of the maximum value of strain rate can determine whether the ignition or extinction occur.

  • PDF

Dynamic Behavior of SM45C at High Strain-rate and High Temperature (고온 고변형률속도에서 SM45C의 동적 거동)

  • Yang, Hyun-Mo;Min, Oak-Key
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.11
    • /
    • pp.1093-1099
    • /
    • 2007
  • A compressive split Hopkinson pressure bar (SHPB) technique is used to investigate the dynamic behavior of SM45C at high temperature. A radiant heater, which consists of one ellipsoidal reflector and one halogen lamp, is used to heat the specimen. Specimens are tested from $600^{\circ}C$ to $1000^{\circ}C$ at intervals of $100^{\circ}C$ at a strain-rate ranging from 1100/s to 1150/s. A critical phenomenon occurs between $700^{\circ}C$ and $750^{\circ}C$ in SM45C. This phenomenon results in the drastic drop in a flow stress. In a modified Johnson-Cook constitutive equation, a reducer function is used to take into account for the effect of the drastic drop in a flow stress. A reducer function, which is dependant on the temperature as well as the strain, is introduced and the parameters of the modified Johnson-Cook constitutive equation are determined from test results.

PREDICTION OF MICROSTRUCTURE DURING HIGH TEMPERATURE FORMING OF Ti-6Al-4V ALLOY

  • Lee Y. H.;Shin T. J.;Yeom J. T.;Park N. K.;Hong S. S.;Shim I. O.;Hwang S. M.;Lee C. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10b
    • /
    • pp.43-46
    • /
    • 2003
  • Prediction of final microstructures after high temperature forming of Ti-6Al-4V alloy was attempted in this study. Using two typical microstructures, i.e., equiaxed and $Widmanst\ddot{a}tten$ microstructures, compression test was carried out up to the strain level of 0.6 at various temperatures $(700\~1100^{\circ}C)$ and strain rates $(10^{-4}\~10^2/s)$. From the flow stress-strain data, parameters such as strain rate sensitivity (m) and activation energy (Q) were calculated and used to establish constitutive equations for both microstructures. Then, finite element analysis was performed to predict the final microstructure of the deformed body, which was well accorded with the experimental results.

  • PDF

Evaluation of Mechanical Property and Microstructure of Forged and T6-treated 6061 Aluminum Alloy Wheel (자동차 휠용 6061 Al합금의 단조 및 T6 열처리 전후의 미세조직과 기계적 특성 평가)

  • Lee, J.H.;Jeong, H.S.;Yeom, J.T.;Kim, J.H.;Park, N.K.;Lee, Y.T.;Lee, D.G.
    • Transactions of Materials Processing
    • /
    • v.16 no.5 s.95
    • /
    • pp.354-359
    • /
    • 2007
  • Effects of forging and mechanical properties of 6061 aluminum alloy wheel for automobiles were investigated in the present study. Microstructural and tensile characteristics of automobile wheel after hot forging process using dynamic screw press were analyzed to evaluate effect of metal flow on mechanical properties. The results showed advanced mechanical properties of 6061 alloy wheel because of $Mg_2Si$ precipitation by T6, elongated grain by forging, and work hardening by dense metal flow, etc. Hot compression tests were conducted in order to characterize high temperature compression deformation behaviors and microstructural variation in the range of $300{\sim}450^{\circ}C$, in the strain rate range of $10^{-3}{\sim}10^1\;sec^{-1}$. As strain rate increased, maximum compression stress increased but it was shown the reverse linear relation between temperature and maximum stress irrelevant to strain rate variation. On the other hand, temperature and yield stress didn't have any linear relation and its relation showed big deviation by a function of strain rate and test temperature.

A Comparative Study of Material Flow Stress Modeling by Artificial Neural Networks and Statistical Methods (신경망을 이용한 HSLA 강의 고온 유동응력 예측 및 통계방법과의 비교)

  • Chun, Myung-Sik;Yi, Joon-Jeong;Jalal, B.;Lenard, J.G.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.5
    • /
    • pp.828-834
    • /
    • 1997
  • The knowledge of material stress-strain behavior is an essential requirement for design and analysis of deformation processes. Empirical stress-strain relationship and constitutive equations describing material behavior during deformation are being widely used, despite suffering some drawbacks in terms of ease of development, accuracy and speed. In the present study, back-propagation neural networks are used to model and predict the flow stresses of a HSLA steel under conditions of constant strain, strain rate and temperature. The performance of the network model is comparedto those of statistical models on rate equations. Well-trained network model provides fast and accurate results, making it superior to statistical models.

A Study on the Hot Deformation Behavior and Dynamic Recrystallization of Al-5wt%Mg Alloy (Al-5wt%Mg 합금의 고온변형특성과 동적재결정 거동에 관한 연구)

  • Hwang, Won-Joo;Cho, Jong-Rae;Bae, Won-Byong;Kang, Suk-Bong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.6
    • /
    • pp.183-189
    • /
    • 1999
  • A numerical analysis was performed to predict flow curves and dynamic recrystallization behaviors of Al-5wt%Mg alloy on the basis of results of hot compression tests. The hot compression tests were carred out in the ranges of 350 ~ 500 ${^\circ}C$ and 5 ${\times}{10^-3}$ ~ 3 ${\times}{10^0}$/sec to obtain the Zener-Hollomon parameter Z. The modelling equation for flow stress was a function of strain, strain rate, temperature. The influence of these variables was quantifield using the Zener-Hollomon parameter. In the modelling equation, the effects of strain hardening and dynamic recrystallization were taken into consideration. Therefore, the modelling stress-strain curves of Al-5wt%Mg alloy were in good agreement with experimental results. Finally, the dynamic recrystallization kinetics were illustrated through the inspection of microstructure after deformation.

  • PDF

Superplstic Forming Analysis of Duplex Stainless Steel with Finite Element Method (유한요소법에 의한 Duplex 스테인레스 강의 초소성 해석)

  • Park, Ji-Won;Kang, Seok-Bong;Hwang, Yeong-Jin;Lee, Seok-Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.10
    • /
    • pp.89-96
    • /
    • 2009
  • In recent years, there has been a considerable interest in the application of super plastic forming in the aircraft and automotive industries. This requires a detailed design of the technological process in order to exploit its peculiar potentialities better. Nowadays, the finite element method is used to plan the sheet metal forming processes whose simulation requires determination of material constants for super plastic materials. The present work is aimed to show a simple method to characterize super plastic materials duplex stainless steel which was formed by a constant gaspressure to hemispheres with and without back pressure. The forming operation was performed using an in-house designed and built biaxial forming apparatus. The temporal change of dome heights of hemispheres were measured for applying the pressures. The flow stresses and strain rates developed at the top of the dome during the forming step were shown to follow closely the flow stress - strain rate relationship obtained from the strain rate change tests performed at the same temperature.