• Title/Summary/Keyword: Flow Restriction Orifice

Search Result 3, Processing Time 0.014 seconds

Flow Distribution in the Core of the HANARO After Suppressing the Jet Flow in the Guide Tube used for Loading Fission Moly Target. (Fission Moly 표적을 장전하기 위한 안내관의 제트유동 억제 후 하나로 노심유량분포)

  • Park Yong-Chul;Lee Byung-Chul;Kim Bong-Soo;Kim Kyung-Ryun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.70-73
    • /
    • 2005
  • The HANARO, multi-purpose research reactor, 30 MWth open-tank-in-pool type, is planning to produce a fission moly-99 of radio isotopes, a mother nuclide of Tc-99m, a medical isotope and is under developing a target handling tool for loading and unloading it in a circular flow tube (OR-5). A guide tube is extended from the reactor core to the top of the reactor chimney for easily loading the target under the reactor normal operation. But active coolant through the core can be quickly raised up to the top of the chimney through the guide tube. The jet flow was suppressed in the guide tube after reducing the inner diameter of a flow restriction orifice installed in the OR-5 flow tube for adding the pressure difference in the flow tube after unloading the target. This paper describes an analytical analysis to calculate the flow distribution in the core of the HANARO after suppressing the jet flow of the guide tube. As results, it was confirmed through the analysis results that the flow distribution in the core of the HANARO were not adversely affected.

  • PDF

FLOW DISTRIBUTION IN THE CORE OF HANARO AFTER SUPPRESSING THE JET FLOW IN THE GUIDE TUBE USED FOR LOADING FISSION MOLY TARGET (Fission Moly 표적을 장전하기 위한 안내관의 제트유동 억제 후 하나로 노심 유량분포)

  • Park Yong Chul;Lee Byung Chul;Kim Bong Soo;Kim Kyung Ryun
    • Journal of computational fluids engineering
    • /
    • v.10 no.4 s.31
    • /
    • pp.66-71
    • /
    • 2005
  • HANARO, a multi-purpose research reactor, 30 MWth open-tank-in-pool type, is planning to produce a fission moly-99 of radio isotopes, a mother nuclide of Tc-99m, a medical isotope and a target handling tool is under development for loading and unloading it in a circular flow tube (OR-5) of HANARO. A guide tube is extended from the reactor core to the top of the reactor chimney for easily loading the target under a normal operation of the reactor. But active coolant through the core can be quickly raised up to the top of the chimney through the guide tube. The jet flow was suppressed in the guide tube after reducing the inner diameter of a flow restriction orifice installed in the OR-5 flow tube for adding the pressure difference in the flow tube. This paper describes an analytical analysis to calculate the flow distribution in the core of HANARO after suppressing the jet flow of the guide tube. As results, it was confirmed through the analysis results that the flow distribution in the core of HANARO were not adversely affected.

Macroscopic Breakup Characteristics of Water Gel Simulants with Triplet Impinging Spray Jet (젤 모사 추진제 삼중 충돌 분사 제트의 거시적 분열 특성 연구)

  • Hwang, Tae-Jin;Lee, In-Chul;Koo, Ja-Ye
    • Journal of ILASS-Korea
    • /
    • v.15 no.3
    • /
    • pp.109-114
    • /
    • 2010
  • The implementation of gelled propellants systems offers high performance, energy management of liquid propulsion, storability, and high density impulse of solid propulsion. The present study focused on the macroscopic spray characteristics of liquid sheets formed by triplet impinging jets of non-Newtonian liquids which are mixed by Carbopol 941 0.5%wt. The results are compared to experiments conducted on spray images which formed by triplet impinging jets concerning with airassist effect at center orifice. When gel propellants are injected by doublet impinging jets at low pressure and high pressure, closed rim pattern shape appeared by polymeric effect from molecular force and showed inactive atomization characteristics, because of extensional viscosity related by restriction of atomization process and breakup time delay of turbulence transition. As increasing mass flow rate of the air(increasing GAR), spray breakup level is also increased.