• Title/Summary/Keyword: Flow Rate at Cracking

Search Result 17, Processing Time 0.029 seconds

Study on Damping Characteristics of Hydropneumatic Suspension Unit of Tracked Vehicle

  • Cho, Jin-Rae;Lee, Hong-Woo;Yoo, Wan-Suk;Lee, Jin-Kyu
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.262-271
    • /
    • 2004
  • Hydropneumatic suspension unit is an important part of tracked vehicles to absorb external impact load exerted from the non-paved road and the cannon discharge. Its absorption performance is strongly influenced by both damping and spring forces of the unit. In this paper, we numerically analyze the damping characteristics of the in-arm-type hydropneumatic suspension unit (ISU) by considering four distinct dynamic modes of the ISU damper: jounce-loading, jounce-unloading, rebound-loading and rebound-unloading. The flow rate coefficients determining the oil flow rate through the damper orifice are decided with the help of independent experiments. The wheel reaction force, the flow rate at cracking and the damping energy are parametrically investigated with respect to the orifice diameter and the wheel motion frequency.

THE EFFECTS OF HEAT INPUT AND GAS FLOW RATE ON WELD INTEGRITY FOR SLEEVE REPAIR WELDING OF IN-SERVICE GAS PIPELINES

  • Kim, Young-pyo;Kim, Woo-sik;Bani, In-wan;Oh, Kyu-Hwan
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.390-395
    • /
    • 2002
  • The experimental and numerical study has been conducted on the sleeve repair welding of API 5L X65 pipeline. SMA W and GTAW were applied to weld the sleeve. The macrostructure and hardness of repair welds have been examined. The [mite element analysis of the multi-pass sleeve-fillet welding has been conducted to validate the experiment and investigate the effects of in-service welding conditions. The effect of gas flow rate on the hydrogen cracking was investigated. The effect of internal pressure on residual stresses and plastic strain was investigated. The allowable heat input was predicted considering the maximum temperature of inner surface of pipe and cooling rate at CGHAZ.

  • PDF

The Effects of Heat Input and Gas Flow Rate on Weld Integrity for Sleeve Repair Welding of In-Service Gas Pipelines

  • Kim, Y.P.;Kim, W.S.;Bang, I.W.;Oh, K.H.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.2
    • /
    • pp.36-41
    • /
    • 2002
  • The experimental and numerical study has been conducted on the sleeve repair welding of API 5L X65 pipeline. SMAW and GTAW were applied to weld the sleeve. The macrostructure and hardness of repair welds have been examined. The finite element analysis of the multi-pass sleeve-fillet welding has been conducted to validate the experiment and investigate the effects of in-service welding conditions. The effect of gas flow rate on the hydrogen cracking was investigated. The effect of internal pressure on residual stresses and plastic strain was investigated. The allowable heat input was predicted considering the maximum temperature of inner surface of pipe and cooling rate at CGHAZ.

  • PDF

Effect of corrosion environment on the SCC of Al-brass tube for vessel (선박용 Al-황동세관의 SCC에 미치는 부식환경의 영향)

  • 임우조;정해규
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.4
    • /
    • pp.291-297
    • /
    • 2003
  • Al-brass is usually used as the tube material of vessel's heat exchanger for seawater cooling system because it has high thermal conductivity and good mechanical properties and high corrosion resistance due to cuprous oxide (Cu20) layer against seawater. However, Al-brass tubes of heat exchanger for vessel at the actual environment is reported that local corrosion such as stress corrosion cracking occurred by synergism effect between mechanical factor and corrosion environment In this paper, the effect of corrosion environment on the stress corrosion cracking of Al-brass in various NH4OH of 3.5% NaCl solution, under flow by constant displacement tester. Based on the test results, the behavior of polarization, stress corrosion crack propagation and dezincification phenomenon of Al-brass are investigated. The main results are as follows:(1) Increasing range of potential from open circuit potential to repassivation gets lower, as the contain rate of NH4OH gets higher. (2) As contain rate of NH4OH gets higher, SCC of Al-brass is become activation but the protection film(Cu20) of Al-brass is created in 3.5% NaCl solution. (3) According as content of NH4OH increases in 3.5% NaCl solution, the dezincifiction area is spread. It is concluded that dezincification occurred by localized preferential anodic dissolution at stress focusing region.

Burst Behavior for Mechanically Machined Axial Flaws of Steam Generator Tubings

  • Hwang, Seong Sik;Kim, Hong Pyo;Kim, Joung Soo
    • Corrosion Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.30-33
    • /
    • 2004
  • It has been reported that some events of a rupture of seam generator tube have occurred in nuclear power plants around the world. Main causes of the leakage are from various types of corrosion in the steam generator(SG) tubings. Primary water stress corrosion cracking(PWSCC) of steam generator tubings have occurred in many tubes in Korean plant, and they were repaired using sleeves or plugs, In order to develop proper repair criteria, it is necessary to ascertain the leak behavior of the tubings. A high pressure leak and burst testing system was manufactured. Various types of Electro Discharged Machined (EDM) notches were developed on the SG tubes. Leak rate and burst pressure were measured on the tubes at room temperature. Burst pressure of the part through wall defected tubes depends on the defect depth, Water flow rates after the burst were independent of the t1aw types; tubes having 20 to 60 mm long EDM notches showed similar flow rates regardless of the defect depth. A fast pressurization rate gave the tube a lower burst pressure than the case of a slow pressurization.

MODEL BASED DIAGNOSTICS FOR A GEARBOX USING INFORMATION THEORY

  • Choi, J.;Bryant, M.D.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.459-460
    • /
    • 2002
  • This article discusses a diagnostics method based on models, and information theory. From an extensive system dynamics bond graph model of a gearbox [1], simulated were various cases germane to this diagnostics approach, including the response of an ideal gearbox, which functions perfectly to designer's specifications, and degraded gearboxes with tooth root cracking. By comparing these cases and constructing a signal flow analogy between the gearbox and a communication channel, Shannon' s information theory [2], including theorems, was applied to the gearbox to assess system health, in terms of ability to function.

  • PDF

Forging Process Design of Aluminium Alloys for Aircraft Parts (항공기용 알루미늄부품의 단조 공정설계연구)

  • Kwon Y. M.;Song J. I.;Lee Y. S.;Lee J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.90-93
    • /
    • 2000
  • Al ally 7050 has been developed for higher strength and improved property against stress-corrosion cracking. Since the use of this alloy becomes more important for forged aircraft structural components. $\phi$ 65mm extruded billet has been forged for a highly-stressed aircraft parts. After forging processing and heat treatment, the forged parts showed undesirable microstructure caused by severe local grain coarsening at the surface layer and heavily-localized metal flow, the analysis of resulted in degraded mechanical properties. The above results have been compared to simulation by using the DEFORM-3D and those showed the thermomechamical processing must be optimized in terms of forging temperature, strain rate and deformation amount. To prevent the grain coarsening at the surface layer $\varepsilon$ heavily-localized grain flows.

  • PDF

Preparation of Pitch for Melt-electrospinning from Naphtha Cracking Bottom Oil (납사 크래킹 잔사유로부터 용융전기방사용 핏치 제조)

  • Kim, Jinhoon;Lee, Sung Ho;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.24 no.4
    • /
    • pp.402-406
    • /
    • 2013
  • In this study, a pitch for melt-electrospinning was prepared from naphtha cracking bottom (NCB) oil by the modification with heat treatment. The softening point and property of the modified pitch was influenced by modification conditions such as nitrogen flow rate, heat treatment temperature, and reaction time. Among these, the heat treatment temperature had a very strong influence on the distribution of molecular weight and softening point of the pitch. The C/H mole ratio and average molecular weight increased with increasing the heat treatment temperature due the decomposition and cyclization reaction of surface-functional groups. In addition, the values of benzene insoluble and quinoline insoluble also tends to decrease, and the width of molecular weight distribution seems to get more narrow. The carbon fiber with a diameter of $4.8{\mu}m$ was prepared from a modified pitch at the softening point of $155^{\circ}C$ by melt-electrospinning. It is believed that the melt-electro spinning method is much more convenient to get the thinner fiber than the conventional melt spinning method.

An Experimental Study on the Strength Characteristics of Mortar according to the Incorporation Rate of Bioinspired Polymer (생체모방 폴리머 혼입율에 따른 모르타르의 강도 특성에 관한 실험적 연구)

  • Lee, Jae-In;Bae, Sung-Ho;Kim, Chae-Young;Yoon, Joo-Ho;Ko, Hyae-Min;Choi, Se-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.257-258
    • /
    • 2022
  • In this study, as a part of the study to alleviate the durability degradation due to low tensile performance and cracking of concrete, two kinds of catechol functional chitosan (Cat-Chit) were replaced at a ratio of 5, 10, 15, 20% as a mixed water substitute to evaluate the fluidility and strength characteristics of mortar.

  • PDF

Reformation of Naphtha Cracking Bottom Oil for the Preparation of Carbon Fiber Precursor Pitch (탄소섬유용 프리커서 피치를 제조하기 위한 나프타 분해 잔사유의 개질)

  • Kim, Myoung Cheol;Eom, Sang Yong;Ryu, Seung Kon;Edie, Dan D.
    • Korean Chemical Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.745-750
    • /
    • 2005
  • Naphtha cracking bottoms(NCB) oil was reformed by varying the heat treatment temperature, treatment time, and nitrogen flow rate in preparation of precursor pitch for isotropic pitch-based carbon fibers and activated carbon fibers. The reformed pitches were investigated in the yield, softening point, elementary analysis, and molecular weight distribution, and then the precursors reformed were melt spun to certify the optimum reforming conditions. The optimum precursor pitch was prepared when the NCB oil was reformed at $380^{\circ}C$, 3 h and 1.25 vvm $N_2$, and it's the softening point was around $240^{\circ}C$. The reforming resulted in product yield of 21 wt%. The C/H mole ratio of the precursor pitch increased from 1.07 to 1.34, the aromaticity increased from 0.85 to 0.88. The insolubles in benzene and quinoline were 30.0 wt% and 1.5 wt%, respectively. The spinning temperature was about $50^{\circ}C$ higher than the softening point. The molecular weights of the precursor components were distributed from 250 to 1250, and 80% of them were in the range of 250 to 700.