• Title/Summary/Keyword: Flow Rate Sensor

Search Result 258, Processing Time 0.024 seconds

Development of a Flow Rate Sensor Using 2-way Cartridge Valve (2-유로 카트리지 밸브를 이용한 유압용 유량 센서의 개발)

  • 홍예선;이정오
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2381-2389
    • /
    • 1993
  • In this paper the design and test results of a dynamic flow rate sensor was reported. This sensor comprises an 2-way cartridge valve as standard hydraulic component and a displacement sensor. Its working principle bases on the linear relationship between the flow rate and the piston displacement of 2-way cartridge valves under constant pressure drop. This principle is well known, however it is not easy to develop a flow rate sensor with the measurement range of 300 1/min, pressure loss of less than 8 bar at 300 1/min, maximum linearity error of less than $\pm$1% and the maximum rising time of 10 ms. This paper describes the design procedure of the flow rate sensor, the improvement procedure of static performance and test method and results of dynamic performance.

Temperature-difference Flow Sensor Using Multiple Fiber Bragg Gratings

  • Kim, Kyunghwa;Eom, Jonghyun;Sohn, Kyungrak;Shim, Joonhwan
    • Current Optics and Photonics
    • /
    • v.6 no.3
    • /
    • pp.297-303
    • /
    • 2022
  • Multiple fiber Bragg gratings (FBGs) have been proposed and demonstrated for gas-flow measurements in a flow channel, using the temperature-difference method. This sensor consists of two FBG temperature sensors and two coil heaters. Coil heaters are used to heat the FBGs. The flow rate of the gas can be obtained by monitoring the difference in the Bragg-wavelength shifts of the two FBGs, which has features that exclude the effect of temperature fluctuations. In this study, experiments are conducted to measure the wavelength shift based on the flow rate, and to evaluate the gas-flow rate in a gas tube. Experimental results show that the sensor has a linear characteristic over a flow-rate range from 0 to 25 ℓ/min. The measured sensitivity of the sensor is 3.2 pm/(ℓ/min) at a coil current of 120 mA.

The thermal effect on electrical capacitance sensor for two-phase flow monitoring

  • Altabey, Wael A.
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.4
    • /
    • pp.335-347
    • /
    • 2016
  • One of major errors in flow rate measurement for two-phase flow using an Electrical Capacitance Sensor (ECS) concerns sensor sensitivity under temperature raise. The thermal effect on electrical capacitance sensor (ECS) system for air-water two-phase flow monitoring include sensor sensitivity, capacitance measurements, capacitance change and node potential distribution is reported in this paper. The rules of 12-electrode sensor parameters such as capacitance, capacitance change, and change rate of capacitance and sensitivity map the basis of Air-water two-phase flow permittivity distribution and temperature raise are discussed by ANSYS and MATLAB, which are combined to simulate sensor characteristic. The cross-sectional void fraction as a function of temperature is determined from the scripting capabilities in ANSYS simulation. The results show that the temperature raise had a detrimental effect on the electrodes sensitivity and sensitive domain of electrodes. The FE results are in excellent agreement with an experimental result available in the literature, thus validating the accuracy and reliability of the proposed flow rate measurement system.

Dynamic and Static Characteristics of Sensor Tube for Mass Flow Controller (질량유량제어기용 센서튜브의 정특성과 동특성에 관한 연구)

  • 김영수;이상경
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.531-537
    • /
    • 2004
  • In this paper, the static and dynamic characteristics in the sensor tube of a mass flow controller(MFC) were studied by experiments. In the sensor tube of MFC. the difference of temperature between inlet and outlet was necessary for calculating the mass flow rate. Therefore, the relations among flow rate, heat generated by heating wire. and sensor location were investigated to find optimized condition. Finally, the relation between sensor voltage through analog digital conversion(ADC) and flow rate in the sensor tube can be represented. Based on this study, static and dynamic characteristics of sensor tube can be used for design of mass flow controller.

Development of a Flow Sensor Using DBD (Dielectric Barrier Discharge) (DBD (Dielectric Barrier Discharge)를 이용한 유량 센서 개발에 관한 연구)

  • Kim, Tae-Hoon;Kim, Sung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2076-2081
    • /
    • 2008
  • In this study, a new concept of a flow sensor is developed using dielectric barrier discharge (DBD). Current of DBD generated between two electrodes is changed with varying flow rates. Therefore, it is possible to measure the flow rate by correlating generated DBD current with flow rates. The effects of flow rate, frequency, channel height, diameter of electrodes and distance between electrodes on the performance of the flow sensor using DBD are experimentally investigated.

  • PDF

Experimental Study on a Micro Flow Sensor (미소 유량 센서에 관한 실험적 연구)

  • Kim, Tae-Hoon;Kim, Sung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1783-1788
    • /
    • 2004
  • In the present paper, a micro flow sensor, which can be used at bio-delivery systems and micro heat pumps, is developed. For this, the micro flow sensor is integrated on a quartz wafer ($SiO_2$) and is manufactured by simple and convenient microfabrication processes. The micro flow sensor aims for measuring mass flow rates in the low range of about $0{\sim}20$ SCCM. The micro flow sensor is composed of temperature sensors, a heater, and a flow microchannel. The temperature sensors and the heater are manufactured by the sputtering processes in this study. In the microfabrication processes, stainless steel masks with different patterns are used to deposit alumel and chromel for temperature sensors and nichrome for the heater on the quartz wafer. The microchannel is made of Polydimethylsiloxane(PDMS) easily. A deposited quartz wafer is bonded to the PDMS microchannel by using the air plasma. Finally, we confirmed the good operation of the present micro flow sensor by measuring flow rate.

  • PDF

Gas-Flow Sensor using Optical Fiber Bragg Grating(FBG)

  • Shim, Joon-Hwan;Cho, Seok-Je;Yu, Yung-Ho;Sohn, Kyung-Rak
    • Journal of Navigation and Port Research
    • /
    • v.32 no.9
    • /
    • pp.717-722
    • /
    • 2008
  • We have proposed and demonstrated an gas-flow sensor using optical fiber bragg grating(FEG). The flow sensor has no electronics and no mechanical parts in its sensing part and the structure is th11s simple and immune to electromagnetic interference(EMI). The FEG sensor was consisted qf the sensing element and a coil heater. The metal coil was used to supply the current to the FEG. While some currents supply to the coil, the refractive index of the FEG under the coil is changed and thus the wavelength shift of fiber optic sensor was induced In this work, the wavelength shift according to flow-rate was experimentally studied and was used to evaluate the gas flow-rate in a gas tube. As a result, it was possible to measure the flow-rate in a linear range from 5 to $20{\ell}/min$ with a resolution of approximately $1{\ell}/min$ at the applied currents of 100 mA and 120 mA. The measured sensitivities were $15.3\;pm/\ell/min$ for 100 mA and $20.2\;pm/\ell/min$ for 120 mA.

A Study of Heat Transfer Phenomena in a Sensor Tube of a Mass Flow Controller (질량흐름 제어기의 센서 튜브에서 열전달현상에 관한 연구)

  • Lee, S.K.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.7 no.3
    • /
    • pp.35-39
    • /
    • 2003
  • In this paper, the heat transfer phenomena in the sensor tube of a mass flow controller(MFC) were studied by experiments. In the sensor tube of MFC, the difference of temperature between inlet and outlet was necessary for calculating the mass flow rate. Therefore, the relations of flow rate, generated heat by heating wire, sensor location and tube thickness were investigated to find the optimized condition. Based on this study, static and dynamic characteristics of sensor can be used for mass flow controller.

  • PDF

Fabrication and characteristics of micro-machined thermoelectric flow sensor (실리콘 미세 가공을 이용한 열전형 미소유량센서 제작 및 특성)

  • Lee, Young-Hwa;Roh, Sung-Cheoul;Na, Pil-Sun;Kim, Kook-Jin;Lee, Kwang-Chul;Choi, Yong-Moon;Park, Se-Il;Ihm, Young-Eon
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.22-27
    • /
    • 2005
  • A thermoelectric flow sensor for small quantity of gas flow rate was fabricated using silicon wafer semiconductor process and bulk micromachining technology. Evanohm R alloy heater and chromel-constantan thermocouples were used as a generation heat unit and sensing parts, respectively. The heater and thermocouples are thermally isolated on the $Si_{3}N_{4}/SiO_{2}/Si_{3}N_{4}$ laminated membrane. The characteristics of this sensor were observed in the flow rate range from 0.2 slm to 1.0 slm and the heater power from 0.72 mW to 5.63 mW. The results showed that the sensitivities $(({\partial}({\Delta}V)/{\partial}(\dot{q}));{\;}{\Delta}V$ : voltage difference, $\dot{q}$ : flow rate) were increased in accordance with heater power rise and decreasing of flow rate.