• Title/Summary/Keyword: Flow Pattern Map

Search Result 46, Processing Time 0.024 seconds

Experimental study on two-phase flow behavior inside a vertical tube evaporator under flashing phenomenon (후래시 현상을 수반하는 수직증발관내에서의 2상유동에 관한 실험적 연구)

  • 이상용;송시홍;이상호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.4
    • /
    • pp.833-846
    • /
    • 1988
  • Two-phase flow heat transfer phenomena with flash evaporation inside a vertical tube were studied experimentally. Void fractions were measured using electrical probes, and the flow patterns were identified from the output voltage signal itself. The flow pattern as well as the beat transfer rates were changing along the axial distance from the tube inlet with the system pressure. As the pressure inside the tube decreases with fixed inlet temperature, the overall heat transfer coefficient through the tube wall and the boiling heat transfer coefficient inside the tube increase whereas the condensation heat transfer coefficient outside the tube decreases. The boiling heat transfer coefficient inside the tube measured by the experiments appeared to be somewhat larger than the value obtained from the Chen's correlation. Also, the flow patterns identified from present experiments are at the larger quality region of the low pattern map based on the transition criteria of Mishima and Ishii. This may be due to the non-equilibrium flashing phenomenon occurred at the nozzle exit and the tube inlet ; this also implies that the flow pattern of the two-phase flow depends strongly on the inlet conditions.

Mixed convection of air in a horizontal cylindrical annulus with rotating outer cylinder (회전하고 있는 바깥쪽 실린더를 갖고 있는 수평 원주형 환형 내에서의 공기의 혼합 대류)

  • Yu, Ju-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.4
    • /
    • pp.551-561
    • /
    • 1997
  • Mixed convection of air in a horizontal concentric cylindrical annulus is investigated numerically. Isothermal boundary conditions are prescribed at the inner and outer cylinders, with the inner cylinder being warmer. The forced flow is induced by the outer cylinder which is rotating slowly with constant angular velocity with its axis at the center of the annulus. The effect of the forced flow on the flow pattern and heat transfer of natural convection is investigated for the annulus of (inner-cylinder radius/gap width) = 1. There appear two eddies, one eddy or no eddy according to the Rayleigh and Reynolds numbers. Map of the three flow regimes is constructed on the Ra-Re plane. (author). 28 refs., 9 figs., 2 tabs.

A Study on Heat Transfer Characteristics in Flow Boiling of Pure Refrigerants and Their Mixtures in Horizontal Tube (수평 전열관내 유동비등하는 순수냉매와 혼합냉매의 열전달 특성에 관한 연구)

  • 임태우;한규일
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.2
    • /
    • pp.144-151
    • /
    • 2003
  • An experimental study was carried out in a uniformly heated horizontal tube to examine heat transfer characteristics of pure refrigerants, R134a and R123, and their mixtures during flow boiling. The flow pattern was also observed through tubular sight glasses with an internal diameter of 10 mm located at the inlet and outlet of the test section. Tests were run at a pressure of 0.6 MPa and in the heat flux ranges of 5~100 kW/$m^2$, vapor Quality 0~100 percent and mass velocity of 150-600 kg/$m^2$s. The observed flow patterns were compared to the flow pattern map of Kattan et al., which predicted well the present data over the entire range of mass velocity employed in this study. Heat transfer coefficients of the mixture were less than the interpolated values between pure fluids both in the low quality region where the nucleate boiling is dominant and in the high quality region where the convective evaporation is dominant.

A Mapping Method of Data-flow graphs into Systolic Arrays (Data-flow graph 로부터 Systolic Array에의 변환방법)

  • Park, Myong-Soon;Jhon, C.S.
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.1121-1124
    • /
    • 1987
  • Previous methods to map from a FORTRAN-like specification into a systolic array were difficult to find data dependencies because the specification was expressed and executed sequentially. Data-flow graph(DFG)s show data dependencies explicitly. In this paper we show a mapping tool from a DFG specification into a systolic array. We introduce the concept of a Systolic Pattern Stream(SPS) and use that concept to derive a systolic array.

  • PDF

The Ultimate Pattern of Shock-Vortex Interaction

  • Chang, Keun-Shik;Barik, Hrushikesh;Chang, Se-Myong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.337-339
    • /
    • 2008
  • As a shock impinges into a vortex of variable strength, complex shock diffraction can occur. Since a vortex has a fixed rotating direction, the shock wave travelling in one direction creates strong asymmetry in the vortex flow field. The process is that first the shock is divided into two parts by the vortex. One part is moving in the adverse direction opposite to the vortex flow which is captured by the vortex center. The other part is moving in the favorable direction, namely, in the direction same as the vortex flow; it is swung around the vortex, accelerating the vortex flow. In this paper we have investigated numerically using ENO scheme how and why the shock-vortex interaction patterns appear so different for different parametric values. Conclusion is that there are three different types of shock-vortex interaction depending on two related parameters: shock Mach number and vortex Mach number. We present a parameter map by which we can discern what type of interaction pattern appears as a shock impinges into a vortex.

  • PDF

The Ultimate Pattern of Shock-Vortex Interaction

  • Chang, Keun-Shik;Barik, Hrushikesh;Chang, Se-Myong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.337-339
    • /
    • 2008
  • Abstract: As a shock impinges into a vortex of variable strength, complex shock diffraction can occur. Since a vortex has a fixed rotating direction, the shock wave travelling in one direction creates strong asymmetry in the vortex flow field. The process is that first the shock is divided into two parts by the vortex. One part is moving in the adverse direction opposite to the vortex flow which is captured by the vortex center. The other part is moving in the favorable direction, namely, in the direction same as the vortex flow; it is swung around the vortex, accelerating the vortex flow. In this paper we have investigated numerically using ENO scheme how and why the shock-vortex interaction patterns appear so different for different parametric values. Conclusion is that there are three different types of shock-vortex interaction depending on two related parameters: shock Mach number and vortex Mach number. We present a parameter map by which we can discern what type of interaction pattern appears as a shock impinges into a vortex.

  • PDF

Northeast Asia Interconnection, and Power Flow Analysis Considering Seasonal Load Patterns

  • Lee, Sang-Seung;Kim, Yu-Chang;Park, Jong-Keun;Lee, Seung-Hun;Osawa, Masaharu;Moon, Seung-Il;Yoon, Yong-Tae
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.1-9
    • /
    • 2007
  • This paper presents the effects of an increase or a decrease of a power reserve by load flow calculations under the seasonal load patterns of each country for the future power shortages faced by the metropolitan areas or by the southeastern area of South Korea in North-East Asia. In this paper, the various cases of the power system interconnections in Far-East Asia are presented, and the resulting interconnected power systems are simulated by means of a power flow analysis performed with the PSS/E 28 version tool. Data for simulation were obtained from the 2-th long term plan of electricity supply and demand in KEPCO. The power flow map is drawn from simulated data and the comparative study is done. In the future, a power flow analysis will be considered to reflect the effects of seasonal power exchanges. And the plan of assumed scenarios will be considered with maximum or minimum power exchanges during summer or winter in North-East Asian countries.

ANALYSES OF FLUID FLOW AND HEAT TRANSFER INSIDE CALANDRIA VESSEL OF CANDU-6 REACTOR USING CFD

  • YU SEON-OH;KIM MANWOONG;KIM HHO-JUNG
    • Nuclear Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.575-586
    • /
    • 2005
  • In a CANDU (CANada Deuterium Uranium) reactor, fuel channel integrity depends on the coolability of the moderator as an ultimate heat sink under transient conditions such as a loss of coolant accident (LOCA) with coincident loss of emergency core cooling (LOECC), as well as normal operating conditions. This study presents assessments of moderator thermal-hydraulic characteristics in the normal operating conditions and one transient condition for CANDU-6 reactors, using a general purpose three-dimensional computational fluid dynamics code. First, an optimized calculation scheme is obtained by many-sided comparisons of the predicted results with the related experimental data, and by evaluating the fluid flow and temperature distributions. Then, using the optimized scheme, analyses of real CANDU-6 in normal operating conditions and the transition condition have been performed. The present model successfully predicted the experimental results and also reasonably assessed the thermal-hydraulic characteristics of a real CANDU-6 with 380 fuel channels. A flow regime map with major parameters representing the flow pattern inside a calandria vessel has also proposed to be used as operational and/or regulatory guidelines.

Visualization of two-phae flow by using transparent Proton Exchange Membrane Fuel Cell (고분자 전해질 연료전지 가시화 장치를 이용한 이상유동 현상 관찰)

  • Lee, Dong-Ryul;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.374-377
    • /
    • 2009
  • The operating temperature of Proton Exchange Membrane Fuel Cell (PEMFC) usually has to be limited under $100^{\circ}C$ to maintain the proper ionic conductivity. Therefore, the only product from reaction, water, is in the liquid phase. Two-phase flow makes the flow phenomenon in the channel difficult to understand and predict. Water blocking in the PEMFC channel or the pore of Gas Diffusion Layer (GDL), called flooding, is known as the main effect of PEMFC degradation. To analyze two-phase flow, the PEMFC with transparent acrylic plate was used. Two-phase flow patterns were observed by varying the current density. When the PEMFC is mounted horizontally, water in the cathode is mainly transported on the interface between the channel and GDL.

  • PDF