• Title/Summary/Keyword: Flow Over Cylinder

Search Result 160, Processing Time 0.022 seconds

Analysis of Ring Pack Lubrication

  • Lee, Jae-Seon;Han, Dong-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.9
    • /
    • pp.928-934
    • /
    • 2000
  • This paper describes a method developed for the simulation of ring pack lubrication characteristic in an internal combustion engine. In general, the quantity of oil supply for piston ring lubrication may be insufficient in filling the entire volume formed at the interference between the piston ring and the cylinder liner. Thus the oil starvation condition should be considered in analyzing piston ring lubrication. In order to reasonably estimate the amount of oil left over on the cylinder liner, the flow rate at the posterior portion of the interface should be calculated with an adequate boundary condition that confirms flow continuity condition. In this analysis, oil starvation and open-end boundary conditions are considered at the inlet and outlet of the piston rings. The lubrication characteristic of each piston ring is obtained by an iterative method with sequential steps. It is revealed that piston rings are operated under oil starvation in most operating cycles and the result under these conditions are quite different from that with the fully-flooded assumption.

  • PDF

NUMERICAL ANALYSIS OF CAVITATING FLOW PAST CYLINDER WITH THREE DIFFERENT CAVITATION MODELS (서로 다른 캐비테이션 모델을 이용한 실린더 주위의 캐비테이션 유동현상 전산해석)

  • Kim, S.Y.;Park, W.G.;Jung, C.M.
    • Journal of computational fluids engineering
    • /
    • v.16 no.1
    • /
    • pp.60-66
    • /
    • 2011
  • Engineering interests of submerged bodies and turbomachinery has led researchers to study various cavitation models for decades. The governing equations used for the present work are the two-phase Navier-Stokes equations with homogeneous mixture model. The solver employed on implicit dual time preconditioning algorithm in curvilinear coordinates. Three different cavitation models were applied to two axisymmetric cylinders and compared with experiments. It is concluded that the Merkle's new cavitation model has successfully accounted for cavitating flows and well captured the re-entrant jet phenomenon over the 0-caliber cylinder.

Direct Numerical Simulation of Mass Transfer in Turbulent Flow Around a Rotating Circular Cylinder (II) - Effect of Schmidt Number - (회전하는 원형단면 실린더 주위의 난류유동 물질전달에 대한)

  • Hwang Jong-Yeon;Yang Kyung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.7 s.238
    • /
    • pp.846-853
    • /
    • 2005
  • In this paper, mass transfer in turbulent flow around a rotating circular cylinder is investigated by Direct Numerical Simulation for Schmidt numbers Sc=1 and 1670. Correlation between Sherwood and Reynolds number predicted agrees well with other experimental results over both Sc. Reynolds analogy identified at Sc=1 definitely causes a strong correlation between concentration fluctuation and streamwise velocity. For Sc=1670, it is found that positive small values of concentration fluctuations are observed more frequently than the case of Sc=1 particularly out of the range of Nernst diffusion layer in the viscous sub-layer. This fact is fully confirmed by detailed statistical study using a probability density function of concentration fluctuations.

Natural Convection in the Annulus between Concentric Inclined Cylinders (경사진 동심원통 사이의 환상공간에서 자연대류 열전달)

  • Kim, Chan-Won;Kwon, Sun-Sok
    • Solar Energy
    • /
    • v.7 no.1
    • /
    • pp.53-60
    • /
    • 1987
  • Natural convection in the annulus between concentric inclined cylinders has been studied by the numerical analysis. Governing equations are numerically solved by means of successive over-relaxation methods for a range in orientation from horizontal to vertical. It is found that flow patterns can also be observed the co-axial double spiral. As the angle of inclination is increased, the center of the eddy is shifted into the lower part of annulus and flow structure is apparently changed. In the present study, the maximum local Nusselt numbers for the inner and outer walls at the vertical cylinder increase more than those at the horizontal cylinder by 71%, 42% respectively. Consequently the effect of inclination on the heat transfer is considerably large.

  • PDF

Prediction on gas exchange process of a multi-cylinder 4-stroke cycle spark ignition engine (다기관 4사이클 스파크 점화기관의 가스 교환과정에 관한 예측)

  • 이병해;이재철;송준호
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.67-87
    • /
    • 1991
  • The computer program which predicts the gas exchange process of multi-cylinder 4-Stroke cycle spark-ignition engine, can be great assistance for the design and development of new engine. In this study, the computer program was developed to predict the gas exchange process of multi-cylinder four stroke cycle spark ignition engine including intake and exhaust systems. When gas exchange process is to be calculated, the evaluation of the variation of the thermo-dynamic properties with time and position in the intake and exhaust systems is required. For the purpose, the application of the generalized method of characteristics to the gas exchange process is known as one of the method. The simulation model developed was investigated to the analysis of the branch system of multi-cylinder. The models used were the 2-zone expansion model and single zone model for in cylinder calculation and the generalized method of characteristic including area change, friction, heat transfer and entropy gradients for pipe flow calculation. The empirical constants reduced to least number as possible were determined through the comparison with the experimented indicator diagram of one particular operation condition and these constants were applied to other operating condition. The predicted pressures in cylinder were compared with the experimental results over the wide range of equivalence ratio and ignition timing. The predicted values have shown good agreement with the experimental results. The thermodynamic properties in the intake and exhaust system were predicted over the wide range of equivalence ratio and ignition timing. The obtained results can be summarized as follows. 1. Pressures in the exhaust manifold have a little influence on the equivalence ratio, a great influence on the ignition timing. 2. Pressures in the inlet manifold are nearly unchanged by the equivalence ratio and the ignition timing. 3. In this study, the behaviors of the exhaust temperature, gas in the exhaust manifold were ascertained.

  • PDF

Experimental Study on the Horseshoe Vortex Systems Around Surface-Mounted Obstacles (평판 위에 부착된 실린더 주위의 말굽와류 시스템에 관한 실험적 연구)

  • 양준모;유정열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1979-1989
    • /
    • 1992
  • An experimental study has been performed to investigate the horseshoe vortex system formed around cylindrical obstacles mounted vertically on the surface over which a boundary layer is formed. To measure the mean velocity of the flow field, a five-hole Pitot tube has been used. In addition, surface static pressure measurements and surface flow visualization were also performed. From the five-hole probe measurements, vorticity distribution was deduced numerically and the streamwise velocity distribution was also examined. To consider the effect of the leading-edge shape on the formation of the horseshoe vortex, a qualitative comparison was made between the three-dimensional flows around a circular cylinder and a wedge-type cylinder. The five-hole probe measurements showed a single primary vortex which exists immediately upstream of the obstacles, and endwall flow visualization showed the existence of a corner vortex. As the vortex passes around the obstacle, the vortex strength is reduced and the vortex core moves radially outward. Due to this horseshoe vortex, the fluid momentum is found to decrease along the streamwise direction. Since the horseshoe vortex formed around a wedge-type cylinder has weaker strength and is confined to a narrower region than that around a circular, the possibility that the secondary flow loss due to the horseshoe vortex can be reduced through a change of the leading- edge shape is proposed.

Computational Study on the Heat Transfer Prediction Hypersonic Flows (극초음속 유동의 열전달 예측에 관한 수치해석적 연구)

  • Nagdewe, Suryakant;Kim, H.D.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.27-30
    • /
    • 2007
  • In recent years, scientific community has found renewed interest in hypersonic flight research. These hypersonic vehicles undergo severe aero-thermal environments during their flight regimes. One of the most important topics of research in hypersonic aerodynamics is to find a reasonable way of calculating either the surface temperature or the heat flux to surface when its temperature is held fixed. This requires modeling of physical and chemical processes. Hyperbolic system of equations with stiff relaxation method are being identified in recent literature as a novel method of predicting long time behavior of systems such as gas at high temperatures. In present work, Energy Relaxation Method (ERM) has been considered to simulate the real gas flow over a 2-D cylinder. Present heat flux results over the cylinder compared well with the experiment. Thus, real gas effects in hypersonic flows can be modeled through energy relaxation method.

  • PDF

A Laboratory Study of Formation of 'The Warm Core' in the East Sea of Korea

  • NA Jung Yul;KIM Bong Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.22 no.6
    • /
    • pp.415-423
    • /
    • 1990
  • In a laboratory model the response of the boundary layer flow over topography is studied in a rotating sliced cylinder by employing the source-sink analogy with Ekman layer dynamics. The boundary layer flow is produced by two different fluid. In the first experiment homogeneous fluid is used both for the source and the working fluid of the container. In the second experiment a denser fluid is used for the source with the same working fluid. For the homogeneous western boundary layer flow both the northward and the southward flow were affected by the topography(ridge) to produce a cyclonic motion near the ridge. When woughward moving heavy boundary flow of slower speed and the northward moving faster flow were present at the same time, the splitting of southward flow and the separating of the northward flow were observed with a cyclonic motion at the ridge. The most important factor that influence production of the cyclonic motion has been turned out to be the presence of the topography in the western boundary layer. In particular the role of the southward moving heavy flow over the interior flow pattern was found to be very significant.

  • PDF

Flow in a cylinder driven by rotating disk with concentrically-grooved surface (동심원 형상 홈이 파여진 원판이 회전하고 있을 때의 실린더 내부유동에 관한 연구)

  • Yoon, Myung-Sup;Park, Jun-Sang;Hyun, Jae-Min
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.622-627
    • /
    • 2003
  • A numerical study is made of a flow in a cylinder with a rotating grooved endwall disk. The aim is to describe differences in the flow fields when there is concentrically-grooved obstacle characterized by amplitude(a) and wave number(N). The Reynolds number(Re) is varied from $10^{3}$ to $10^{4}$ and the aspect ratio(Ar) fixed to 1.0 for the most part of the simulation. For the various cases of amplitude(a) and wave number(N), numerical results are acquired. As the endwall groove roughness increases until certain limit, the interior azimuthal velocity component(v) increases drastically. But over the limit, the swirl motion chararcterized by velocity v decreases and finally it approaches much alike Ar=1.0-a case. The reason of activating swirl motion is based on increasing of torque transported by endwall disk. Torque coefficients($C_{T}$) are aquired for the various (a,N,Re) combinations and the limiting phenomena of swirl motion activation is explained.

  • PDF

The Behavior of Shock Wave through a Circular Tunnel around Supersonic Cylinder using FVS Upwind Scheme (FVS를 이용한 터널을 통과하는 초음속 실린더 주위의 충격파 거동 해석)

  • Ko M. H.;Shin C. H.;Park W. G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.29-35
    • /
    • 1999
  • A two-dimensional Euler code based on flux vector splitting scheme has been developed to simulate the behavior of supersonic shock wave over the cylinder. AF+ADI scheme was used for time integration. The sliding multiblock technique was implemented to handle the relative motion of the moving cylinder and the stationary tunnel. The code is validated with a problem of subsonic flow around a Naca-0012 airfoil. The Computation results show complex phenomena of the propagation of shock waves and the reflection as expansion wave at tunnel exit.

  • PDF