• 제목/요약/키워드: Flow Mixing

검색결과 1,775건 처리시간 0.03초

포 소화설비용 소화약제 혼합장치의 성능향상을 위한 정량 혼합특성에 관한 연구 (A Study on Foam Mixing Characteristics in Steady State to Enhance the Performance of Proportioner for Foam System)

  • 구재현
    • 한국방재학회 논문집
    • /
    • 제9권5호
    • /
    • pp.63-68
    • /
    • 2009
  • 본 연구에서 물 흐름에 일정한 농도로 포 소화약제를 정확하게 혼합하는 포 소화설비용 소화약제 혼합장치의 성능향상을 위하여 포소화약제의 정량 혼합특성을 분석하였다. 펌프, 탱크, 압력계, 유량계, 노즐로 구성되는 성능평가 시스템을 사용하여 개발된 프로포셔너의 성능이 실험적으로 평가하였다. 결과적으로 라인프로포셔너의 포소화약제 혼합성능은 벤츄리 효과에 의한 물유량 증가와 오리피스 단면적 증가에 따라 증가하고 오차율 $\pm4%$이내의 범위에서 물 유량과 포소화약제 양의 혼합농도 3%의 성능을 보였다. 프레셔프로포셔너의 경우 물 유량 증가와 입구압력 증가에 따라 혼합성능이 증가하고 오차율 $\pm2%$이내의 범위에서 물 유량과 포소화약제 양의 혼합농도 3%의 성능으로 분석되었다.

진동 교반기가 있는 미소채널에서 혼합에 대한 Karman 와의 영향 (The Effect of Karman Vortex for Mixing in a Micro-channel with an Oscillating Micro-stirrer)

  • 안상준;맹주성;김용대
    • 대한기계학회논문집B
    • /
    • 제30권2호
    • /
    • pp.144-152
    • /
    • 2006
  • In order to consider the effect of Karman vortex for mixing, mixing indices are calculated for 4 models of micro channel flows driven from the combinations of a circular cylinder and a oscillating stirrer. And their results are compared to that of a simple straight micro channel flow(model I). The mixing rate is improved 5.5 times by Karman vortex (model II) and 11.0 times by the stirrer(model III) respectively. In case of successive mixing by the cylinder and the stirrer(model IV), $27\%$ of shortening the channel length for the complete mixing as well as 1.37 times improvement of mixing efficiency then model III. And then, variation of mixing indices are much stable comparing with the others. Thus, it is found that the Karman vortex plays a good role as a pre-mixing method. The D2Q9 Lattice Boltzmann methods are used.

대형 2차 와류에 의한 봉다발 부수로에서의 난류 열전달 향상에 관한 실험적 연구 (Experiment of Turbulent Heat Transfer Performance Enhancement in Rod Bundle Subchannel by the Large Scale Vortex Flow)

  • 서귀현;최영돈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1592-1597
    • /
    • 2004
  • Experimental studies were carried out to confirm the turbulent enhancement of the cooling system of nuclear reactor by large scale vortex generation in nuclear fuel rod bundle. The large scale vortex motions were generated by rearranging the inclination angles of mixing vanes to the coordinate directions. Experimental studies were carried out at Reynolds Number 60,000 with hydraulic condition. Normal variations of mean velocity and turbulent intensity in the rod bundle subchannel were measured by the 2-color LDV measurement system. The turbulence generated by split mixing vanes has small length scales so that they maintain only about 10DH after the spacer grid. On the other hand, the turbulences generated by the large scale vortex continue more and remain up $25D_{H}$ after the spacer grid.

  • PDF

Investigation of Spacer Grid Thermal Mixing Performance Based on Hydraulic Tests

  • Yang, Sun-Kyu;Min, Kyung-Ho;Chung, Moon-Ki
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1995년도 추계학술발표회논문집(1)
    • /
    • pp.377-382
    • /
    • 1995
  • An evaluation method of spacer grid thermal mixing performance in rod bundles is suggested based on hydraulic tests in a single phase flow. Heat transfer correlation was derived by the analogy between momentum and heat transfer. Three of major factors, such as blockage ratio of spacer grid, convective flow swirling, and turbulent intensity, were found to be significantly influential to the spacer grid thermal mixing performance. Local heat transfer near spacer grid was predicted for the hydraulic test of 6 ${\times}$ 6 rod bundles with neighboring different spacer grids.

  • PDF

정수장내 수류에너지를 이용한 액체약품의 효율적인 혼화를 위한 수리해석 (Numerical Study on effective Mixing Chemical Liquid using Hydraulic Energy in a Water Treatment Plant)

  • 송길섭;오석영;박영빈
    • 한국전산유체공학회지
    • /
    • 제7권2호
    • /
    • pp.1-7
    • /
    • 2002
  • The present study is developed device that effectively mixes raw water and chemicals by using the residual head of fluid in the front pipe of flocculation basin, and performed non-dimensional analysis and presented design standard to apply to water plants that have different equipment capacity. The variables for design are a proper ratio between an outer diameter of deflector and a diameter of pipe, a distance between deflector and orifice and a determination of orifice diameter for an optimal mixing. Numerical study has analyzed flow field on a basis of turbulent intensity in an orifice downstream. As Reynolds number of In-Line Orifice was increased from identical design variable, the turbulent intensity of pipe center was no changed almost.

A Numerical Study on the Effect of DVI Nozzle Location on the Thermal Mixing in RVDC

  • Kang, Hyung-Seok;Cho, Bong-Hyun
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 추계학술발표회논문집(1)
    • /
    • pp.283-288
    • /
    • 1996
  • Direct safety injection into the reactor vessel downcomer annulus(DVI) is a fundamental feature of the KNGR(Korean Next Generation Reactor) four-train safety injection system. The numerical analysis of thermal mixing of ECC(Emergency Core Cooling) water through DVI with the water in the RVDC(Reactor Vessel Downcomer) annulus has been performed, in order to study the impact of nozzle location on the pressurized thermal shock and safety analysis. The results of this study show that the thermal mixing due to the natural circulation induced by the limiting accident conditions is sufficient to prevent temperature in the RVDC from dropping to the level of concern for PTS. When the DVI nozzle is located right above the cold leg, the temperature distribution at the outlet of flow field is most uniform. The tool used for numerical analysis is CFDS-FLOW3D.

  • PDF

RP에 의한 마이크로 채널 제작과 채널내 혼합에 대한 성능평가 (Study on Microchannel Fabrication using RP and Experiment on Stirring Characteristics in it)

  • 허형석;서용권
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1016-1020
    • /
    • 2003
  • In this paper, we present a technology of producing anew chaotic micromixer, named Micromixer with Arranged Blocks(MAB), and the experimental result of the mixing performance. Chaotic mixing was successfully achieved by introducing periodic perturbation in the field of the channel flow by means of slanted blocks. The MAB was made by an RP(Rapid Prototyping) technology. We performed flow visualization experiments for the quantification of the mixing performance with the MAB. Lyapunov exponent was measured to be 0.3557 and 0.1305 for the block height 0.8 and 0.2 times the channel width.

  • PDF

ASSESSMENT OF THERMAL FATIGUE IN MIXING TEE BY FSI ANALYSIS

  • Jhung, Myung Jo
    • Nuclear Engineering and Technology
    • /
    • 제45권1호
    • /
    • pp.99-106
    • /
    • 2013
  • Thermal fatigue is a significant long-term degradation mechanism in nuclear power plants. In particular, as operating plants become older and life time extension activities are initiated, operators and regulators need screening criteria to exclude risks of thermal fatigue and methods to determine significant fatigue relevance. In general, the common thermal fatigue issues are well understood and controlled by plant instrumentation at fatigue susceptible locations. However, incidents indicate that certain piping system Tee connections are susceptible to turbulent temperature mixing effects that cannot be adequately monitored by common thermocouple instrumentations. Therefore, in this study thermal fatigue evaluation of piping system Tee-connections is performed using the fluid-structure interaction (FSI) analysis. From the thermal hydraulic analysis, the temperature distributions are determined and their results are applied to the structural model of the piping system to determine the thermal stress. Using the rain-flow method the fatigue analysis is performed to generate fatigue usage factors. The procedure for improved load thermal fatigue assessment using FSI analysis shown in this study will supply valuable information for establishing a methodology on thermal fatigue.

배플 형상에 따른 교반기 내부 고체입자 분포의 비정상상태 해석 (TRANSIENT SIMULATION OF SOLID PARTICLE DISTRIBUTION WITH VARIOUS DESIGN PARAMETERS OF THE BAFFLE IN A STIRRED TANK)

  • 김치겸;이승재;원찬식;허남건
    • 한국전산유체공학회지
    • /
    • 제14권4호
    • /
    • pp.1-6
    • /
    • 2009
  • In the present study, numerical simulations were performed in a stirred solid/liquid system by using Eulerian multi-phase model. The transient flow field of liquid and distribution of solid particles were predicted in the stirred tank with pitched paddle impeller and baffles. The Frozen rotor method is adopted to consider the rotating motion of the impeller. The effects of number and width of baffles on the mixing time and the quality of solid suspension in the stirred tank are presented numerically. The result shows that the mixing time decreases as the width and number of baffles increase. The present numerical methodology can be applied to optimizing mixing condition of industrial mixer.