• Title/Summary/Keyword: Flow Mixing

Search Result 1,774, Processing Time 0.029 seconds

Bottom Friction of Surface Waves and Current Flow (천해파와 해류에 의한 해저면 마찰력)

  • 유동훈;김지웅
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.12 no.3
    • /
    • pp.130-138
    • /
    • 2000
  • The friction factor equation of open channel flow is developed by using Prandtl's mixing length theory and considering the flow characteristics of smooth or rough turbulent flow. BYO model considers vertical velocity profile for the (:omputation of bottom friction of surface waves and current flow. The model computes the mean bottom friction of combined wave-current flow by the vectorial summation of wave velocity and current velocity at Bijker point. The near bottom flow is discriminated by three flow regimes; smooth, transitional and rough turbulent flow. The model, BYO, has been further refined considering the combination of smooth turbulent flow and rough turbulent flow.

  • PDF

EFFECT OF VALVE TIMING AND LIFT ON FLOW AND MIXING CHARACTERISTICS OF A CAI ENGINE

  • Kim, J.N.;Kim, H.Y.;Yoon, S.S.;Sa, S.D.;Kim, W.T.
    • International Journal of Automotive Technology
    • /
    • v.8 no.6
    • /
    • pp.687-696
    • /
    • 2007
  • To increase the reliability of auto-ignition in CAI engines, the thermodynamic properties of intake flow is often controlled using recycled exhaust gases, called internal EGR. Because of the internal EGR influence on the overall thermodynamic properties and mixing quality of the gases that affect the subsequent combustion behavior, optimizing the intake and exhaust valve timing for the EGR is important to achieve the reliable auto-ignition and high thermal efficiency. In the present study, fully 3D numerical simulations were carried out to predict the mixing characteristics and flow field inside the cylinder as a function of valve timing. The 3D unsteady Eulerian-Lagrangian two-phase model was used to account for the interaction between the intake air and remaining internal EGR during the under-lap operation while varying three major parameters: the intake valve(IV) and exhaust valve(EV) timings and intake valve lift(IVL). Computational results showed that the largest EVC retardation, as in A6, yielded the optimal mixing of both EGR and fuel. The IV timing had little effect on the mixing quality. However, the IV timing variation caused backflow from the cylinder to the intake port. With respect to reduction of heat loss due to backflow, the case in B6 was considered to present the optimal operating condition. With the variation of the intake valve lift, the A1 case yielded the minimum amount of backflow. The best mixing was delivered when the lift height was at a minimum of 2 mm.

Flow Characteristics Analysis of the Decontamination Device with Mixing and Diffusion Using Radio-Isotopes Tracer (방사성 동위원소를 이용한 제염제 혼합확산장치의 유동특성분석)

  • Oh, Daemin;Kang, Sungwon;Kim, Youngsug;Jung, Sunghee;Moon, Jinho;Park, Jangguen
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.5
    • /
    • pp.282-287
    • /
    • 2017
  • The purpose of this study was predicted the effects of mixing and diffusion due to the operation of the apparatus before the development of the mixed diffusion device for the decontamination absorbent to minimize the influence of contaminant inflow due to radiation accident. The tracer used for the flow characteristics was $^{68}Ga$, $^{99m}Tc$, which is a radioactive isotope, and 2 inch NaI radiation detector was used to detect it. The impeller of the decontamination mixed diffusion system applied to this study was made into three types and the mixing diffusion effect was compared. As a result of analyzing the flow characteristics of the radio-isotope with decontamination mixed diffusion device, mixing, diffusion and flow pattern were obtained. The radial mixing type impeller was able to diffuse to the water surface by the upflow flow, and the fin structure was adjusted for finding optimal conditions. The model 3 type consists of a fin guiding part and an auxiliary fin so that the diffusion speed is higher than that of other types of impellers. It also showed a short time to reach complete mixing.

Time-split Mixing Model for Analysis of 2D Advection-Dispersion in Open Channels (개수로에서 2차원 이송-분산 해석을 위한 시간분리 혼합 모형)

  • Jung, Youngjai;Seo, Il Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.495-506
    • /
    • 2013
  • This study developed the Time-split Mixing Model (TMM) which can represent the pollutant mixing process on a three-dimensional open channel through constructing the conceptual model based on Taylor's assumption (1954) that the shear flow dispersion is the result of combination of shear advection and diffusion by turbulence. The developed model splits the 2-D mixing process into longitudinal mixing and transverse mixing, and it represents the 2-D advection-dispersion by the repetitive calculation of concentration separation by the vertical non-uniformity of flow velocity and then vertical mixing by turbulent diffusion sequentially. The simulation results indicated that the proposed model explains the effect of concentration overlapping by boundary walls, and the simulated concentration was in good agreement with the analytical solution of the 2-D advection-dispersion equation in Taylor period (Chatwin, 1970). The proposed model could explain the correlation between hydraulic factors and the dispersion coefficient to provide the physical insight about the dispersion behavior. The longitudinal dispersion coefficient calculated by the TMM varied with the mixing time unlike the constant value suggested by Elder (1959), whereas the transverse dispersion coefficient was similar with the coefficient evaluated by experiments of Sayre and Chang (1968), Fischer et al. (1979).

Mixing Method of Water and Chemicals in a Small-Scale Water Supply System (간이상수도에서 물과 약품의 혼합방법)

  • Yoo, Young-Hyun;Ki, Hyun;Choi, Jong-Wook;Kim, Sung-Cho;Kim, Jeong-Soo;Kim, Yong-Seon
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3128-3133
    • /
    • 2007
  • The mixing method of water and chemicals is significant in a small-scale water supply system because drinking water should be supplied with a certain quantity of remaining chemicals maintained. In the present study, the concentration distribution and the mixing index were obtained from four models, which were to find out the optimal mixing method of water and chemicals. The two models brought the good mixing effects out of the four, one for providing chemicals from the center of water supply pipe and the other for setting up the semicircle block at the downstream of the chemicals-providing pipe. As a result, the mixing effect was found out to be increased due to the diffusion and the disturbance of flows. In conclusion, these results are expected to contribute to designing the optimal mixing system.

  • PDF

Optimization of Passive Mixer for Enhanced Mixing in a Micro-channel by Using Lattice Bloltzmann Method (격자 볼츠만 방법을 이용한 미소 채널에서의 혼합효율 증가를 위한 수동형 믹서의 최적화)

  • Han Gyu suk;Byun Sung Joon;Yoon Joon Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.5 s.236
    • /
    • pp.707-715
    • /
    • 2005
  • In this work, Scalar Passive code in Lattice Boltzmann Method is employed to simulate two-phase flow of low Reynolds number in a micro-channel. The mixing characteristics in a micro-channel is a function of Peclet number. The mixing length increases with the Peclet number. It is found that with the inclusion of static elements at the channel, rapid mixing of two liquids can be achieved, as shown by the results of computer simulations. The enhancement in mixing performance is thought to be caused by the generation of eddies and by lateral velocity component when the mixture flows past static elements. The results indicate that the size of static element has more effect on the mixing than the number of static element.

Mixing Effect by the Geometry of Static Mixer with Turbulent In-Situ Mixing Process (난류 용탕 In-Situ 합성법을 위한 스태틱 믹서의 형상에 따른 혼합 효과)

  • Lee, Dae-Sung;Kim, Hyo-Geun;Ha, Man-Yeong;Park, Yong-Ho;Park, Ik-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.12 s.243
    • /
    • pp.1307-1312
    • /
    • 2005
  • Turbulent in-situ mixing process is a new material process technology to get dispersed phase in nanometer size by controlling reaction of liquid/liquid, liquid/solid and liquid/gas, flow and solidification speed simultaneously. In this study mixing, the key technology to this synthesis method will be studied by computational fluid dynamics. For the simulation of mixing of liquid metal, static mixers will be investigated. Two inlets for different liquid metal meet and merge like 'Y' shape tube. The tube has various shapes such as straight and curved. Also, the radius of curve will be varied. The performance of mixer will be evaluated with quantitative analysis with coefficient of variance of mass fraction. Also, detailed plots of intersection will be presented to understand effect of mixer shape on mixing.

Analysis of impingement mixing for coating in injection mold (사출금형 안에서 코팅을 위한 충돌혼합에 관한 해석)

  • Kim, Seul-Woo;Lee, Ho-Sang
    • Design & Manufacturing
    • /
    • v.13 no.4
    • /
    • pp.1-9
    • /
    • 2019
  • In-mold Coating is a method that can simultaneously perform injection molding and surface coating in injection mold. The material used for coating is two-component polyurethane which is composed of polyol and isocyanate. L-type mixing head can be used to mix polyol and isocyanate uniformly, and inject them inside the mold cavity. The surface quality of the injection molded products by using in-mold coating depends on the mixing uniformity between main agent and hardener. In this study, flow analysis was performed to design a mixing head for uniform mixing of two-component polyurethane. Especially the effects of design parameters of mixing head on mixing uniformity and nozzle pressure were investigated. The parameters of mixing head were mixing chamber diameter, cleaning cylinder diameter, nozzle alignment angle in the horizontal and vertical direction, and cleaning piston position. It was found that optimal design values were mixing chamber diameter of 3.5 mm, cleaning cylinder diameter of 5.0 mm, nozzle horizontal/vertical alignment angles of 140°/160°, and cleaning piston position of 1.8 mm. The optimal values would be used to develop a two-component mixing head achieving an uniform mixing for in-mold coating.

Three Dimensional Unsteady Flow Characteristics inside the Catalytic Converter of 6 Cylinder Gasoline Engine (6기통 가솔린 엔진에 장착된 촉매변환기 내의 3차원 비정상 유동특성 해석)

  • 정수진;김우승
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.108-120
    • /
    • 1998
  • A theoretical study of three-dimensional unsteady compressible non-reacting flow inside double flow of monolith catalytic converter system attached to 6-cylinder engine was performed for the achievement of performance improvement, reduction of light-off time, and longer service life by improving the flow distribution of pulsating exhaust gases. The differences between unsteady and steady-state flow were evaluated through the numerical computations. To obtains the boundary conditions to a numerical analysis, one dimensional non-steady gas dynamic calculation was also performed by using the method of characteristics in intake and exhaust system. Studies indicate that unsteady representation is necessary because pulsation of gas velocity may affect gas flow uniformity within the monolith. The simulation results also show that the level of flow maldistribution in the monolith heavily depends on curvature and angles of separation streamline of mixing pipe that homogenizes the exhaust gas from individual cylinders. It is also found that on dual flow converter systems, there is severe interactions of each pulsating exhaust gas flow and the length of mixing pipe and junction geometry influence greatly on the degree of flow distribution.

  • PDF

A Study on the Characteristics of Cylinder Wake Placed in Thermally Stratified Flow (I) (열성층유동장에 놓인 원주후류의 특성에 대한 연구 (1))

  • 김경천;정양범;김상기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.690-700
    • /
    • 1994
  • The effects of thermal stratification on the flow of a stratified fluid past a circular cylinder were examined in a wind tunnel. In order to produce strong thermal stratifications, a compact heat exchanger type variable electric heater is employed. Linear temperature gradient of up to $250^{\circ}C/m$ can be well sustained. The velocity and temperature profiles in the cylinder wake with a strong thermal gradient of $200^{\circ}C/m$ were measured and the smoke wire flow visualization method was used to investigate the wake characteristics. It is found that the temperature field effects as an active contaminant, so that the mean velocity and temperature profiles can not sustain their symmetricity about the wake centerline when such a strong thermal gradient is superimposed. It is evident that the turbulent mixing in the upper half section is stronger than that of the lower half of the wake in a stably stratified flow.