• Title/Summary/Keyword: Flow Mixing

Search Result 1,775, Processing Time 0.032 seconds

Injection Characteristics Evaluation of Conductive Grout Material According to Carbon Fiber Mixing Ratio (탄소섬유 배합비에 따른 전도성 그라우트 재료의 주입특성평가)

  • Hyojun Choi;Wanjei Cho;Hyungseok Heo;Teawan Bang;Chanyoung Yune
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.1
    • /
    • pp.15-23
    • /
    • 2023
  • The grouting method is a method of construction for the purpose of waterproofing and reinforcing soft ground. When grout is injected into the ground, there are various types of penetration and diffusion of grout depending on the shape of the ground, the size of soil, the porosity, and the presence or absence of groundwater. the current situation. Therefore, in this study, to investigate the penetration performance of the grouting to conductive material, laboratory tests were performed on the addition of the conductive material. In the injection test, 0%, 3%, and 5% of the mixed water were added as conductive materials to the grout, and the original ground condition was composed of various types of ground composed of gravel and silica sand. Conductive grout is injected by pressure into the model ground using a dedicated injection device, and the injection time (t), pressure (p), flow rate (v) and injection amount (q) are measured, and the hardened body injected in the model ground is collected. Penetration performance was evaluated. In the results of the grout injection experiment, the amount of conductive material used and the grout injection rate showed an inverse relationship, and it was confirmed that the penetration pattern was changed according to the size of the soil particles in the model ground. The grout containing the conductive material has relatively good penetration into the ground and excellent strength and durability of the hardened body, so it was judged that it could be used as an additive for measuring the penetration range of the grout.

Fundamental Properties of Mortar with Magnet-Separated Converter-Slag Powder as SCM (자력 선별 전로슬래그 미분말을 결합재로 활용한 모르타르의 기초특성)

  • Beom-Soo Kim;Sun-Mi Choi;Jin-Man Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.3
    • /
    • pp.161-168
    • /
    • 2023
  • Converter slag is a by-product generated by refining the pig iron produced into molten steel in the blast furnace, occupying about 15 % of the weight of steel production. It has a high free-CaO content that can generate expansion cracks when used for concrete aggregate. This is the main reason to make it difficult to recycle. To solve this problem, government guideline requires that converter slag has to be aged in an open yard for 90 days. However, aging can not be perfectly performed because it entails time and cost. In this study, we tried to investigate the applicability of converter slag as a cementitious material rather than an aggregate by mixing converter slag with mortar formulations. According to the EDS results of the converter slag in the experiment, we found that screening in the aggregate phase was more effective than that in the powder phase. When the particles separated by a magnet in the aggregate state were pulverized and used for concrete up to a 15 % replacement ratio, various engineering characteristics, such as flow, length change, and compressive strength, showed engineering characteristics similar to those of the control mix.

Evaluation of Bonding Performance in UHPC-based Concrete Repair Materials Considering Surface of Structure Subject to Repair (보수대상 구조 표면 상태를 고려한 UHPC 기반 콘크리트 보수재료의 부착 성능 평가)

  • Yong-Sik Yoon;Kyong-Chul Kim;Kwang-Mo Lim;Gi-Hong An;Gum-Sung Ryu;Kyung-Taek Koh
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.433-439
    • /
    • 2023
  • In this study, the bonding performance of repair materials was evaluated on concrete repair surface to develop concrete repair materials based on UHPC (Ultra High Performance Concrete) which has high mechanical and durability performance. The ten test variables were applied considering the roughness and wet condition of the concrete surface subject to repair, the addition of polymer, and the use PP and PVA fibers in repair materials. The addition of the polymer caused a significant decrease in strength, which was thought to be due to the effect of the additional super plasticizer used to adjust workability. Also, flow was reduced by up to 13.8 % with the use of plastic-based fibers. As a result of evaluating the bond strength of the repair material considering the condition of the surface subject to repair, it was thought that in the case of using UHPC-based repair material, high bonding performance could be secured without any additional surface treatment as long as the surface of the base material was sound. In addition, UHPC-based repair materials showed high bonding performance even when the attachment surface was wet. In the future, research will be conducted on shot-crete application and gradient pouring for the development of UHPC-based repair materials, and continuous improvement in the repair material mixing property will be carried out to ensure economic efficiency and performance as a concrete structural repair material.

Investigative Analysis of By-products from Lignocellulosic Biomass Combustion and Their Impact on Mortar Properties (목질계 바이오매스 연소부산물 분석과 모르타르 혼입 평가)

  • Jung, Young-Dong;Kim, Min-Soo;Park, Won-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.6
    • /
    • pp.663-671
    • /
    • 2023
  • This research experimentally evaluated the recyclability of four varieties of lignocellulosic fly ash(FA), a by-product from three power plants employing lignocellulosic biomass(Bio-SRF, wood pellets) as a fuel source. Comprehensive analyses were conducted on FA, encompassing both physical parameters (particle shape, size distribution, fineness, and density) and chemical properties(chemical composition and heavy metal content). Mortar test specimens, with FA mixing ratios ranging from 5 to 20%, were produced in compliance with KS L 5405 standards, and their flow and compressive strength were subsequently measured. The test results indicated that the four types of FA exhibited particle sizes approximately between 20~30㎛, densities around 2.3~2.5g/cm3, and a fineness range of 2,600~4,900cm2/g. The FA comprised approximately 50~90% of components such as SiO2, Al2O3, Fe2O3, and CaO, displaying characteristics akin to type-II and type-III FA of KS L 5405 standards, albeit with differences in chlorine and SiO2 content. From the mortar tests, it was observed that the compressive strength of the mortar ranged between 34~47MPa when the pellet combustion FA was mixed in proportions of 5~20%. FA, produced exclusively from the combustion of 100% lignocellulosic fuel, is assessed to possess high recyclability potential as a substitute for conventional admixtures.

The Influence of Fineness Modulus of Pine Aggregate and Grain Shape of Coarse Aggregate on the Properties of High Flowing Concrete (잔골재 조립률 및 굵은골재 입형이 초유동 콘크리트의 특성에 미치는 영향)

  • Jung Yong-Wook;Lee Seung-han;Yun Yong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.785-792
    • /
    • 2005
  • This study is to examine the influence of defective grain shape of coarse aggregate and lowered fineness modulus of fine aggregate on the characteristics of high flowing concrete. The flow ability and compact ability of high flowing concrete was examined using fine aggregate, varying its fineness modulus to 2.0, 2.5, 3.0, and 3.5, and coarse aggregate with before and after grain shape improvement. Also the influence of fineness modulus of fine aggregate and grain shape of coarse aggregate on dispersion distance of particles of aggregate was examined by relatively comparing the dispersion distance between particles of aggregate. According to the experimental result, minimum porosity when mixing fine aggregate and coarse aggregate was shown in order of fineness modulus of fine aggregate, 3.0, 2.5, 2.0, 3.5, regardless of the improvement of grain shape. So when the fineness modulus is bigger or smaller than KS Standard $2.3\~3.1$, the porosity increased. When the spherical rate of the grain shape of coarse aggregate unproved from 0.69, a disk shape to 0.78 sphere shape, the rate of fine aggregate, which represents minimum porosity, decreased $6\%$ from $47\%\;to\;41\%$. The 28 days compressive strength according to fineness modulus of fine aggregate increased about 3 ma as the fineness modulus increased from 2.0 to 2,5, and 3.0. However, the 28 days compressive strength decreased about 9 ma at 3.5 fineness modulus as compared with 3.0 fineness modulus. The improvement of grain shape in coarse aggregate and increase of fineness modulus in fine aggregate made the flow ability, compact ability, and V-rod flowing time improve. Also the fineness modulus of fine aggregate increased the paste volume ratio when a higher value was used within the scope of KS Standard $2.3\~3.1$.

Evaluation of Viral Inactivation Efficacy of a Continuous Flow Ultraviolet-C Reactor (UVivatec) (연속 유동 Ultraviolet-C 반응기(UVivatec)의 바이러스 불활화 효과 평가)

  • Bae, Jung-Eun;Jeong, Eun-Kyo;Lee, Jae-Il;Lee, Jeong-Im;Kim, In-Seop;Kim, Jong-Su
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.4
    • /
    • pp.377-382
    • /
    • 2009
  • Viral safety is an important prerequisite for clinical preparations of all biopharmaceuticals derived from plasma, cell lines, or tissues of human or animal origin. To ensure the safety, implementation of multiple viral clearance (inactivation and/or removal) steps has been highly recommended for manufacturing of biopharmaceuticals. Of the possible viral clearance strategies, Ultraviolet-C (UVC) irradiation has been known as an effective viral inactivating method. However it has been dismissed by biopharmaceutical industry as a result of the potential for protein damage and the difficulty in delivering uniform doses. Recently a continuous flow UVC reactor (UVivatec) was developed to provide highly efficient mixing and maximize virus exposure to the UV light. In order to investigate the effectiveness of UVivatec to inactivate viruses without causing significant protein damage, the feasibility of the UVC irradiation process was studied with a commercial therapeutic protein. Recovery yield in the optimized condition of $3,000\;J/m^2$ irradiation was more than 98%. The efficacy and robustness of the UVC reactor was evaluated with regard to the inactivation of human immunodeficiency virus (HIV), hepatitis A virus (HAV), bovine herpes virus (BHV), bovine viral diarrhea virus (BVDV), porcine parvovirus (PPV), bovine parvovirus (BPV), minute virus of mice (MVM), reovirus type 3 (REO), and bovine parainfluenza virus type 3 (BPIV). Non enveloped viruses (HAV, PPV, BPV, MVM, and REO) were completely inactivated to undetectable levels by $3,000\;J/m^2$ irradiation. Enveloped viruses such as HIV, BVDV, and BPIV were completely inactivated to undetectable levels. However BHV was incompletely inactivated with slight residual infectivity remaining even after $3,000\;J/m^2$ irradiation. The log reduction factors achieved by UVC irradiation were ${\geq}3.89$ for HIV, ${\geq}5.27$ for HAV, 5.29 for BHV, ${\geq}5.96$ for BVDV, ${\geq}4.37$ for PPV, ${\geq}3.55$ for BPV, ${\geq}3.51$ for MVM, ${\geq}4.20$ for REO, and ${\geq}4.15$ for BPIV. These results indicate that UVC irradiation using UVivatec was very effective and robust in inactivating all the viruses tested.

Evaluation of the Giggenbach Bottle Method with Artificial Fumarolic Gases (인공 분기공 가스를 이용한 Giggenbach bottle 법의 평가)

  • Lee, Sangchul;Kang, Jungchun;Yun, Sung Hyo;Jeong, Hoon Young
    • Journal of the Korean earth science society
    • /
    • v.34 no.7
    • /
    • pp.681-692
    • /
    • 2013
  • We aimed to evaluate the effectiveness of the Giggenbach bottle method and develop the related pretreatment and analytical methods using artificial fumarolic gases. The artificial fumarolic gases were generated by mixing $CO_2$, CO, $H_2S$, $SO_2$, $H_2$, and $CH_4$ gas streams with a $N_2$ stream sparged through an acidic medium containing HCl and HF, with their compositions varied by adjusting the gas flow rates. The resultant fumarolic gases were collected into an evacuated bottle partially filled with a NaOH absorption solution. While non-condensible gases such as CO, $H_2S$, and $CH_4$ accumulated in the headspace of the bottle, acidic components including $CO_2$, $SO_2$, HCl, and HF that were dissolved into the alkaline solution. Like other acidic components, $H_2S$ also dissolved into the solution, but it reacted with dissolved $Cd^{2+}$ to precipitate as CdS when $Cd(CH_3COO)_2$ was added. The non-condensible gases were analyzed on a gas chromatography. Then, CdS precipitates were separated from the alkaline solution by filtration, and they were pretreated with $H_2O_2$ to oxidize CdS-bound sulfide into sulfate. In addition, a portion of the solution was also pretreated with $H_2O_2$ to oxidize sulfite to sulfate. Following the pretreatment, the resultant samples were analyzed for $SO_4^{2-}$, $Cl^-$ and $F^-$ on an ion chromatography. In the meanwhile, dissolved $CO_2$ was analyzed on a total organic carbon-inorganic carbon analyzer without such pretreatment. According to our experimental results, the measured concentrations of the fumarolic gases were shown to be proportional to the gas flow rates, indicating that the Giggenbach bottle method is adequate for monitoring volcanic gas. The pretreatment and analytical methods employed in this study may also enhance the accuracy and reproducibility of the Giggenbach bottle method.

Variation of Inflow Density Currents with Different Flood Magnitude in Daecheong Reservoir (홍수 규모별 대청호에 유입하는 하천 밀도류의 특성 변화)

  • Yoon, Sung-Wan;Chung, Se-Woong;Choi, Jung-Kyu
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.12
    • /
    • pp.1219-1230
    • /
    • 2008
  • Stream inflows induced by flood runoffs have a higher density than the ambient reservoir water because of a lower water temperature and elevated suspended sediment(SS) concentration. As the propagation of density currents that formed by density difference between inflow and ambient water affects reservoir water quality and ecosystem, an understanding of reservoir density current is essential for an optimization of filed monitoring, analysis and forecast of SS and nutrient transport, and their proper management and control. This study was aimed to quantify the characteristics of inflow density current including plunge depth($d_p$) and distance($X_p$), separation depth($d_s$), interflow thickness($h_i$), arrival time to dam($t_a$), reduction ratio(${\beta}$) of SS contained stream inflow for different flood magnitude in Daecheong Reservoir with a validated two-dimensional(2D) numerical model. 10 different flood scenarios corresponding to inflow densimetric Froude number($Fr_i$) range from 0.920 to 9.205 were set up based on the hydrograph obtained from June 13 to July 3, 2004. A fully developed stratification condition was assumed as an initial water temperature profile. Higher $Fr_i$(inertia-to-buoyancy ratio) resulted in a greater $d_p,\;X_p,\;d_s,\;h_i$, and faster propagation of interflow, while the effect of reservoir geometry on these characteristics was significant. The Hebbert equation that estimates $d_p$ assuming steady-state flow condition with triangular cross section substantially over-estimated the $d_p$ because it does not consider the spatial variation of reservoir geometry and water surface changes during flood events. The ${\beta}$ values between inflow and dam sites were decreased as $Fr_i$ increased, but reversed after $Fr_i$>9.0 because of turbulent mixing effect. The results provides a practical and effective prediction measures for reservoir operators to first capture the behavior of turbidity inflow.

Preparation and Characterization of Bamboo-based Activated Carbon by Phosphoric Acid and Steam Activation (인산 및 수증기 활성화에 의한 대나무 활성탄 제조 및 특성 연구)

  • Park, Jeong-Woo;Ly, Hoang Vu;Oh, Changho;Kim, Seung-Soo
    • Clean Technology
    • /
    • v.25 no.2
    • /
    • pp.129-139
    • /
    • 2019
  • Bamboo is an evergreen perennial plant, and it is known as one of the most productive and fastest-growing plants in the world. It grows quickly in moderate climates with only moderate water and fertilizer. Traditionally in Asia, bamboo is used for building materials, as a food source, and as versatile raw materials. Bamboo as a biomass feedstock can be transformed to prepare activated carbon using the thermal treatment of pyrolysis. The effect of process variables such as carbonization temperature, activation temperature, activation time, the amount of steam, and the mixing ratio of phosphoric acid and bamboo were systematically investigated to optimize the preparation conditions. Steam activation was proceeded after carbonization with a vapor flow rate of $0.8{\sim}1.8mL-H_2O\;g-char^{-1}\;h^{-1}$ and activation time of 1 ~ 3 h at $700{\sim}900^{\circ}C$. Carbon yield and surface area reached 2.04 ~ 20.59 wt% and $499.17{\sim}1074.04m^2\;g^{-1}$, respectively, with a steam flow rate of $1.4mL-H_2O\;g-char^{-1}\;h^{-1}$ for 2 h. Also, the carbon yield and surface area were 24.67 wt% and $1389.59m^2\;g^{-1}$, respectively, when the bamboo and phosphoric acid were mixed in a 1:1 weight ratio ($700^{\circ}C$, 2 h, $1.4mL-H_2O\;g-char^{-1}\;h^{-1}$). The adsorption of methylene blue into the bamboo activated carbon was studied based on pseudo first order and second order kinetics models. The adsorption kinetics were found to follow the pseudo second order model, which is governed by chemisorption.

The Development of a Benthic Chamber (BelcI) for Benthic Boundary Layer Studies (저층 경계면 연구용 Benthic chamber(BelcI) 개발)

  • Lee, Jae-Seong;Bahk, Kyung-Soo;Khang, Buem-Joo;Kim, Young-Tae;Bae, Jae-Hyun;Kim, Seong-Soo;Park, Jung-Jun;Choi, Ok-In
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.15 no.1
    • /
    • pp.41-50
    • /
    • 2010
  • We have developed an in-situ benthic chamber (BelcI) for use in coastal studies that can be deployed from a small boat. It is expected that BelcI will be useful in studying the benthic boundary layer because of its flexibility. BelcI is divided into three main areas: 1) frame and body chamber, 2) water sampler, and 3) stirring devices, electric controller, and data acquisition technology. To maximize in-situ use, the frame is constructed from two layers that consist of square cells. All electronic parts (motor controller, pA meter, data acquisition, etc.) are low-power consumers so that the external power supply can be safely removed from the system. The hydrodynamics of BelcI, measured by PIV (particle image velocimetry), show a typical "radial-flow impeller" pattern. Mixing time of water in the chamber is about 30 s, and shear velocity ($u^*$) near the bottom layer was calculated at $0.32\;cm\;s^{-1}$. Measurements of diffusivity boundary layer thickness showed a range of $180-230\;{\mu}m$. Sediment oxygen consumption rate, measured in-situ,was $84\;mmol\;O_2\;m^{-2}\;d_{-1}$, more than two times higher than on-board incubation results. Benthic fluxes assessed from in-situ incubation were estimated as follows: nitrate + nitrite = $0.18\;{\pm}\;0.07\;mmol\;m^{-2}\;d^{-1}$ ammonium $23\;{\pm}\;1\;mmol\;m^{-2}\;d^{-1}$ phosphate = $0.09\;{\pm}\;0.02\;mmol\;m^{-2}\;d^{-1}$ and silicate = $23\;{\pm}\;1\;mmol\;m^{-2}\;d^{-1}$.