• Title/Summary/Keyword: Flow Injection Analysis

Search Result 716, Processing Time 0.026 seconds

Increasing Cell Concentration by the Automatic Addition of Glucose, Ammonium and Phosphate in the Cultivation of a Baker′s Yeast in Alcohol Distillery Wastewater (알콜증류폐액을 이용한 빵효모배양에서 포도당, 암모늄 및 인산의 자동첨가에 의한 증균)

  • 이형춘
    • KSBB Journal
    • /
    • v.18 no.3
    • /
    • pp.197-201
    • /
    • 2003
  • Automatic addition of glucose, ammonium and phosphate to alcohol distillery wastewater and their control at low concentrations have been carried increase the cell concentration of a baker's yeast cultivated in the wastewater. Glucose was automatically added using dissolved oxygen as the control parameter, and maintained below 300 mg/L. Ammonium was automatically added by a pH-stat method and maintained in the low range of 12.6~17.4 mM. An automated FIA system, which used an ascorbic acid-based method was developed for the automatic analysis nad addition of phosphate. With this system, the phosphate concentration was succesfully analysed and controlled afrer 19.4 hr in the range 23.3~43.4 mg/L. The cell concentration was increased by 33.0-fold by the addition of these three nutrients. The overall specific growth rate of the yeast was 0.19 $hr^{-1}$.

CFD Analysis of Trap Effect of Groove in Lubricating Systems: Part I - Variation in Cross-Sectional Shape of Groove (그루브의 Trap 효과에 대한 CFD 해석: 제 1부 − 그루브 단면 형상의 변화)

  • Hong, Sung-Ho
    • Tribology and Lubricants
    • /
    • v.32 no.3
    • /
    • pp.101-105
    • /
    • 2016
  • Trap effect of groove is evaluated in a lubricating system using computational fluid dynamics (CFD) analysis. The simulation is based on the standard k-ε turbulence model and the discrete phase model (DPM) using a commercial CFD code FLUENT. The simulation results are also capable of showing the particle trajectories in flow field. Computational domain is meshed using the GAMBIT pre-processor. The various grooves are applied in order to improve lubrication characteristics such as reduction of friction loss, increase in load carrying capacity, and trapping of the wear particles. Trap effect of groove is investigated with variations in cross-sectional shape and Reynolds number in this research. Various cross-sectional shapes of groove (rectangular, triangle, U shaped, trapezoid, elliptical shapes) are considered to evaluate the trap effect in simplified two-dimensional sliding bearing. The particles are assumed to steel, and defined a single particle injection condition in various positions. The “reflect” boundary condition for discrete phase is applied to the wall boundary, and the “escape” boundary condition to “pressure inlet” and “pressure outlet” conditions. The streamlines are compared with particles trajectories in the groove. From the results of numerical analysis in the study, it is found that the cross-sectional shapes favorable to the creation of vortex and small eddy current are effective in terms of particle trapping effect. Moreover, it is found that the Reynolds number has a strong influence on the pattern of vortex or small eddy current in the groove, and that the pattern of the vortex or small eddy current affects the trap effect of the groove.

Fabrication and transcription estimation of prismless LGP for cellular phone using E-Mold technology (전열가열방식을 이용한 휴대전화용 복합기능 도광판 제작 및 전사성 평가)

  • Kim, Young-Kyun;Chung, Jae-Youp;Kim, Dong-Hak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.1
    • /
    • pp.186-193
    • /
    • 2009
  • In this paper, we adopted E-MOLD patent technology in order to fabricate Prismless LGP(Light Guide Panel) fur cellular phone and estimate the transcription of injection-molded parts. Then, we manufactured the Ni stamper fur Prismless LGP using MEMS process. And the stamper was installed in the movable heated core which is the key part of a patented mold. Using this mold, we manufactured injection-molded plastic LGP parts with different mold temperatures so that we investigate effect of the temperature on the transcription of the parts. The CAE analysis was also conducted in order to compare with the experimental results. The transcription of LGP parts with various mold temperature displayed $100^{\circ}C$(25.0nm), $140^{\circ}C$(48.4nm), $180^{\circ}C$(52.1nm) and when compared with stamper(521Inm), transcription was superior at $180^{\circ}C$. According to the CAE results, moldability was improved as mold temperature ($50^{\circ}C{\sim}180^{\circ}C$) increased, but when filling time($1{\sim}2sec$) increases, it decreased at $160^{\circ}C$. And transcription and moldability were improved markedly at glass transition temperature($140^{\circ}C$).

Development of Quantification Methods for the Myocardial Blood Flow Using Ensemble Independent Component Analysis for Dynamic $H_2^{15}O$ PET (동적 $H_2^{15}O$ PET에서 앙상블 독립성분분석법을 이용한 심근 혈류 정량화 방법 개발)

  • Lee, Byeong-Il;Lee, Jae-Sung;Lee, Dong-Soo;Kang, Won-Jun;Lee, Jong-Jin;Kim, Soo-Jin;Choi, Seung-Jin;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.6
    • /
    • pp.486-491
    • /
    • 2004
  • Purpose: factor analysis and independent component analysis (ICA) has been used for handling dynamic image sequences. Theoretical advantages of a newly suggested ICA method, ensemble ICA, leaded us to consider applying this method to the analysis of dynamic myocardial $H_2^{15}O$ PET data. In this study, we quantified patients' blood flow using the ensemble ICA method. Materials and Methods: Twenty subjects underwent $H_2^{15}O$ PET scans using ECAT EXACT 47 scanner and myocardial perfusion SPECT using Vertex scanner. After transmission scanning, dynamic emission scans were initiated simultaneously with the injection of $555{\sim}740$ MBq $H_2^{15}O$. Hidden independent components can be extracted from the observed mixed data (PET image) by means of ICA algorithms. Ensemble learning is a variational Bayesian method that provides an analytical approximation to the parameter posterior using a tractable distribution. Variational approximation forms a lower bound on the ensemble likelihood and the maximization of the lower bound is achieved through minimizing the Kullback-Leibler divergence between the true posterior and the variational posterior. In this study, posterior pdf was approximated by a rectified Gaussian distribution to incorporate non-negativity constraint, which is suitable to dynamic images in nuclear medicine. Blood flow was measured in 9 regions - apex, four areas in mid wall, and four areas in base wall. Myocardial perfusion SPECT score and angiography results were compared with the regional blood flow. Results: Major cardiac components were separated successfully by the ensemble ICA method and blood flow could be estimated in 15 among 20 patients. Mean myocardial blood flow was $1.2{\pm}0.40$ ml/min/g in rest, $1.85{\pm}1.12$ ml/min/g in stress state. Blood flow values obtained by an operator in two different occasion were highly correlated (r=0.99). In myocardium component image, the image contrast between left ventricle and myocardium was 1:2.7 in average. Perfusion reserve was significantly different between the regions with and without stenosis detected by the coronary angiography (P<0.01). In 66 segment with stenosis confirmed by angiography, the segments with reversible perfusion decrease in perfusion SPECT showed lower perfusion reserve values in $H_2^{15}O$ PET. Conclusions: Myocardial blood flow could be estimated using an ICA method with ensemble learning. We suggest that the ensemble ICA incorporating non-negative constraint is a feasible method to handle dynamic image sequence obtained by the nuclear medicine techniques.

Prediction of Sink Phenomenon during Forging Process and Improvement of LPI Fuel Filter Housing Forging Product (LPI 차량용 연료필터 상부 하우징 냉간 단조 성형 공정에서 sink 현상 예측 및 개선)

  • Kim, Jun-Young;Park, Sang-Min;Hong, Seokmoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.395-399
    • /
    • 2017
  • The LPI fuel filter housings used in automobiles were made from conventional die castings but have recently been developed by cold forging to improve the weight and durability. On the other hand, a sink may develop at the core of the forged product due to the resulting T-shape, which not only reduces the aesthetics, but also increases the post-processing cost of the product. Therefore, this research focused on methods to predict and mitigate sink development and progression during the T-shape forging process. Finite element analysis of the forging process was first performed to determine the optimal initial workpiece devoid of burrs and underfills. An accurate sink prediction was then obtained via metal flow analysis, which was a result of the finite element simulation. Through finite element analysis, it was confirmed that sink development is a product of the differences in nodal velocities arising from the T-shaped forging process. Consequently, a pad was inserted beneath the sink to minimize these velocity differences. The results yielded significant improvement with regard to the sink defect. This method was practically applied to an industrial site to validate the sink improvement.

Simulation Analysis of Sludge Disposal and Volatile Fatty Acids Production from Gravity Pressure Reactor via Wet Air Oxidation (습식산화반응을 통한 중력식반응기로부터의 슬러지 처리 및 유기산 생산 공정모사)

  • Park, Gwon Woo;Seo, Tae Wan;Lee, Hong-Cheol;Hwang, In-Ju
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.248-254
    • /
    • 2016
  • Efficacious wastewater treatment is essential for increasing sewage sludge volume and implementing strict environmental regulations. The operation cost of sludge treatment amounts up to 50% of the total costs for wastewater treatment plants, therefore, an economical sludge destruction method is crucially needed. Amid several destruction methods, wet air oxidation (WAO) can efficiently treat wastewater containing organic pollutants. It can be used not only for sludge destruction but also for useful by-product production. Volatile fatty acids (VFAs), one of many byproducts, is considered to be an important precursor of biofuel and chemical materials. Its high reaction condition has instituted the study of gravity pressure reactor (GPR) for an economical process of WAO to reduce operation cost. Simulation of subcritical condition was conducted using Aspen Plus with predictive Soave-Redlich-Kwong (PSRK) equation of state. Conjointly, simulation analysis for GPR depth, oxidizer type, sludge flow rate and oxidizer injection position was carried out. At GPR depth of 1000m and flow rate of 2 ton/h, the conversion and yield of VFAs were 92.02% and 0.17g/g, respectively.

Hydro-Mechanical Modelling of Fault Slip Induced by Water Injection: DECOVALEX-2019 TASK B (Step 1) (유체 주입에 의한 단층의 수리역학적 거동 해석: 국제공동연구 DECOVALEX-2019 Task B 연구 현황(Step 1))

  • Park, Jung-Wook;Park, Eui-Seob;Kim, Taehyun;Lee, Changsoo;Lee, Jaewon
    • Tunnel and Underground Space
    • /
    • v.28 no.5
    • /
    • pp.400-425
    • /
    • 2018
  • This study presents the research results and current status of the DECOVALEX-2019 project Task B. Task B named 'Fault slip modelling' is aiming at developing a numerical method to simulate the coupled hydro-mechanical behavior of fault, including slip or reactivation, induced by water injection. The first research step of Task B is a benchmark simulation which is designed for the modelling teams to familiarize themselves with the problem and to set up their own codes to reproduce the hydro-mechanical coupling between the fault hydraulic transmissivity and the mechanically-induced displacement. We reproduced the coupled hydro-mechanical process of fault slip using TOUGH-FLAC simulator. The fluid flow along a fault was modelled with solid elements and governed by Darcy's law with the cubic law in TOUGH2, whereas the mechanical behavior of a single fault was represented by creating interface elements between two separating rock blocks in FLAC3D. A methodology to formulate the hydro-mechanical coupling relations of two different hydraulic aperture models and link the solid element of TOUGH2 and the interface element of FLAC3D was suggested. In addition, we developed a coupling module to update the changes in geometric features (mesh) and hydrological properties of fault caused by water injection at every calculation step for TOUGH-FLAC simulator. Then, the transient responses of the fault, including elastic deformation, reactivation, progressive evolutions of pathway, pressure distribution and water injection rate, to stepwise pressurization were examined during the simulations. The results of the simulations suggest that the developed model can provide a reasonable prediction of the hydro-mechanical behavior related to fault reactivation. The numerical model will be enhanced by continuing collaboration and interaction with other research teams of DECOLVAEX-2019 Task B and validated using the field data from fault activation experiments in a further study.

Determination and survey of fluoroquinolones in meats and eggs (II) (식육 및 계란에서 플루오로퀴놀론계 항균물질 정량분석 및 잔류조사 (II))

  • Choi, Yoon-Hwa;Kim, Yeon-Ju;Lee, Kyung-Hye;Kang, Young-Il;Lee, Jung-Hark
    • Korean Journal of Veterinary Service
    • /
    • v.32 no.3
    • /
    • pp.281-286
    • /
    • 2009
  • Fluoroquinolones in muscle and egg were separated by liquid extraction and determined. The analysis was carried out using following conditions; C18 column ($150{\times}4.6mm$, $5{\mu}m$), mobile phase composed of D.W. (containing 0.4% triethylamine and phosphoric acid) : methanol : acetonitrile (780:100:120, v/v/v), quarternary pump at a flow rate of 0.9ml/min and $20{\mu}l$ of injection volume, fluorescence detector with EX 278nm/Em 456nm. The calibration range of seven fluoroquinolones showed linearity ($r^2{\geq}0.999$) at concentration range of $0.025{\sim}0.8{\mu}g/ml$. The recoveries in fortified muscle and egg represented more than 81.3%. The detection limits for ofloxacin, norfloxacin, ciprofloxacin, enrofloxacin, danofloxacin, saraloxacin and orbifloxacin were 3.1, 2.5, 3.6, 1.7, 0.9, 2.5 and $2.1{\mu}g/kg$, respectively. We also monitored fluoroquinolones residue in the sample (chicken muscle 182, cattle muscle 140, pig muscle 139, egg 212) using EEC-plate (E. coli ATCC 11303) screening and HPLC confirmation methods. The screening test results, fluoroquinolones, antibacterial substances were all negative.

Applicability of CGS for Remediation and Reinforcement of Damaged Earth Dam Core (손상된 흙댐 코어의 보수.보강을 위한 CGS 공법의 적용성)

  • 천병식;최중근
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.325-334
    • /
    • 2003
  • It is very difficult to rehabilitate the damaged earth dam core to manage it stably against development of flow path and increase of leakage by hydraulic fracture. In this study, application of CGS (Compaction Grouting System) to damaged earth dam core was noticed by analyzing and comparing the results of the in-situ data and FEM. Results of in-situ data showed that according as progress of rehabilitation works tip pressures increased and volume of injection decreased, voids of damaged dam core were filled with materials similar to origin dam core. Rehabilitations caused turbidity and volume of leakage to decrease at the same water level. Also, results of FEM analysis indicated that permeability decreased by rehabilitation. Through this study, it is proved that CGS is able to decrease permeability coefficient, volume of leakage and turbidity on damaged earth dam core.

NUMERICAL STUDY OF TURBINE BLADE COOLING TECHNIQUES (터빈 블레이드 냉각시스템에 관한 수치해석적 연구)

  • Kim, K.Y.;Lee, K.D.;Moon, M.A.;Heo, M.W.;Kim, H.M.;Kim, J.H.;Husain, A.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.530-533
    • /
    • 2010
  • This paper presents numerical analysis and design optimization of various turbine blade cooling techniques with three-dimensional Reynolds-averaged Navier-Stokes(RANS) analysis. The fluid flow and heat transfer have been performed using ANSYS-CFX 11.0. A fan-shaped hole for film-cooling has been carried out to improve film-cooling effectiveness with the radial basis neural network method. The injection angle of hole, lateral expansion angle of hole and ratio of length-to-diameter of the hole are chosen as design variables and spatially averaged film-cooling effectiveness is considered as an objective function which is to be maximized. The impingement jet cooling has been performed to investigate heat transfer characteristic with geometry variables. Distance between jet nozzle exit and impingement plate, inclination of nozzle and aspect ratio of nozzle hole are considered as geometry variables. The area averaged Nusselt number is evaluated each geometry variables. A rotating rectangular channel with staggered array pin-fins has been investigated to increase heat transfer performance ad to decrease friction loss using KRG modeling. Two non-dimensional variables, the ratio of the eight diameter of the pin-fins and ratio of the spacing between the pin-fins to diameter of the pin-fins selected as design variables. A rotating rectangular channel with staggered dimples on opposite walls are formulated numerically to enhance heat transfer performance. The ratio of the dimple depth and dimple diameter are selected as geometry variables.

  • PDF