• Title/Summary/Keyword: Flow Induced Noise

Search Result 271, Processing Time 0.03 seconds

Measurement of Low-Frequency Ocean Noise by a Self-Recording Hydrophone (자동기록식 수중청음기를 이용한 저주파 해양잡음의 측정)

  • Kim, Bong-Chae;Kim, Byoung-Nam;Cho, Hong-Sang
    • Ocean and Polar Research
    • /
    • v.29 no.4
    • /
    • pp.311-316
    • /
    • 2007
  • Ocean noise may be used for monitoring wind speed and rainfall rate on the sea surface, as well as for tracking whales' migration routes. In particular, low-frequency ocean noise has recently been of concern with relation to the behavior of marine mammals. Low-frequency ocean noise has been increasing over the past few decades due to increase of ship traffic and offshore oil industry activities. Mechanical noise such as flow noise and cable strumming noise may be induced if low-frequency ocean noise is measured by cabled traditional hydrophone in high current areas. To successfully measure low-frequency ocean noise in a shallow water environment with strong current, we developed a self-recording hydrophone. This paper describes the main configurations of the self-recording hydrophone and presents some results on measured data.

Reduction of Aerodynamic Noise for a High-Speed Slim-Type Optical Disk Drive by Applying the Principle of Resonator (공명기를 이용한 고배속 슬림형 드라이브의 유동기인 소음저감에 관한 연구)

  • Yang, Tae-Man;Choi, Moon-Ho;Rhim, Yoon-Chul;Lee, In-Hwan;Lee, Han-Beak;Cha, Ik-Joo
    • Transactions of the Society of Information Storage Systems
    • /
    • v.3 no.4
    • /
    • pp.196-201
    • /
    • 2007
  • As the demand for the lap-top computer has been increased, most users ask quiet environment to work comfortably. Therefore, noise problems of an ODD are of great interest. For the high speed ODD, the flow induced noise is caused by the turbulent flow[1], which is known to be a major source of overall noise of a slim type ODD. In this study, we introduce a new attempt to reduce the noise level using the concept of Helmholtz resonator[2].The experimental analysis is carried out for several cases at different resonance frequencies and different hole patterns. The results show reductions in the noise level from the acoustic noise absorption point of view.

  • PDF

External Flow and Cabin Interior Noise Analysis of Hyundai Simple Model by Coupling CAA++ and ACTRAN

  • Kim, Young Nam;Chae, Jun Hee;Jachmot, Jonathan;Jeong, Chan Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.291-291
    • /
    • 2013
  • The interior vehicle noise due to the exterior aerodynamic field is an important topic in the acoustic design of a car. The air flow detached from the A-pillar and impacting the side windows are of particular interest as they are located close to the driver / passenger and provides a lower insulation index than the trimmed car body parts. HMC is interested in the numerical prediction of this aerodynamic noise generated by the car windows with the final objective of improving the products design and reducing this noise. The methodology proposed in this paper relies on two steps: the first step involves the computation of the exterior flow and turbulence induced non-linear acoustic field using the CAA(Computational aeroacoustics) solver CAA++. The second step consists in the computation of the vibro-acoustic transmission through the side window using the finite element vibro-acoustic solver Actran. The internal air cavity including trim component are included in the simulation. In order to validate the numerical process, an experimental set-up has been created based on a generic car shape. The car body includes the windshield and two side windows. The body is made of aluminum and trimmed with porous layers. First, this paper describes the method including the CAA and the vibro-acoustic models, from the boundary conditions to the different components involved, like the windows, the trims and the car cavity is detailed. In a second step, the experimental set-up is described. In the last part, the vibration of the windshield and windows, the total wind noise level results and the relative contributions of the different windows are then presented and compared to measurements. The influence of the flow yaw angle (different wind orientation) is also assessed.

  • PDF

Quantitative Analysis of Quadrupole Noise Sources upon Quick Opening The Throttle (쓰로틀밸브 급개방시 기류소음의 4극음원에 대한 정량적 해석)

  • Kim Jaeheon;Cheong Cheolung;Kim SungTae;Lee Soogab
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.469-474
    • /
    • 2002
  • In recent years, modularization of engine parts has increased the application of plastic products in air intake systems. Plastic intake manifolds provide many advantages including reduced weight, contracted cost, and lower intake air temperatures. These manifolds, however, have some weakness when compared with customary aluminium intake manifolds, in that they have low sound transmission loss because of their lower material density. This low transmission loss of plastic intake manifolds causes several problems related to flow noise, especially when the throttle is opened quickly. The physical processes, responsible for this flow noise, include turbulent fluid motion and relative motion of the throttle to the airflow. The former is generated by high-speed airflow in the splits between the throttle valve and the inner-surface of the throttle body and surge-tank, which can be categorized into the quadrupole source. The latter induces the unsteady force on the flow, which can be classified into the dipole source. In this paper, the mechanism of noise generation from the turbulence is only investigated as a preliminary study. Stochastic noise source synthesis method is adopted for the analysis of turbulence-induced, i.e. quadrupole noise by throttle at quick opening state. The method consists of three procedures. The first step corresponds to the preliminary time-averaged Navier-Stokes computation with a $k-\varepsilon$ turbulence model providing mean flow field characteristics. The second step is the synthesis of time-dependent turbulent velocity field associated with quadrupole noise sources. The final step is devoted to the determination of acoustic source terms associated with turbulent velocity. For the first step, we used market available analysis tools such as STAR-CD, the trade names of fluid analysis tools available on the market. The steady state flows at three open angle of throttle valve, i.e. 20, 35 and 60 degree, are numerically analyzed. Then, time-dependent turbulent velocity fields are produced by using the stochastic model and the flow analysis results. Using this turbulent velocity field, the turbulence-originated noise sources, i.e. the self-noise and shear-noise sources are synthesized. Based on these numerical results, it is found that the origin of the turbulent flow and noise might be attributed to the process of formulation and the interaction of two vortex lines formed in the downstream of the throttle valve. These vortex lines are produced by the non-uniform splits between the throttle valve and inner cylinder surface. Based on the analysis, we present the low-noise design of the inner geometry of throttle body.

  • PDF

THE ROLE OF NOISE IN THE GENESIS OF VIBRATION-INDUCED WHITE FINGER SYNDROME

  • Griefahn, Barbara;Fritz, Martin;Brode, Petyer;Koh, Kyung-Sim
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.644-649
    • /
    • 1994
  • Recent studies reveal that grip forces due to repeated mechanical vasocompressions are most significant for the genesis of vibration-induced which finger syndrome (VWF). Therefore, exerted grip force was regarded as a dependent variable in 2 experiments and the effects of noise and vibrations of different weighted acceleration levels were studied. Neither grip forces nor peripheral blood flow as indicated by finger skin temperature were influenced by noise or vibrations. the cause of VWF is therefore presumed to be a concomitant variable which correlates with weighted accelerations and with grip forces as well. A possible factor is the weight of hand-held vibrating tools.

  • PDF

A Study on the Duct Design of HVAC System Using the Equal Friction Method and the T-method (등압법과 T-method를 이용한 공조시스템 배관 설계에 관한 연구)

  • Park, Joon-Suk;Choi, Gil-Hwan;Cho, Dae-Seung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.4
    • /
    • pp.435-443
    • /
    • 2009
  • Optimal duct design of a HVAC system requires analysis technology to accurately evaluate its pressure losses, flow rate and velocity for making a compromised design among fan capacity and duct size affecting initial manufacturing and operation costs, and noise induced by the HVAC system. In this paper, we carry out initial duct design using the equal friction method. Using the result, the T-method is applied for accurate analysis of flow rate. Then, the duct size is modified using the difference between the required and the calculated flow rate, which can guarantee required flow rate, reduce the pressure unbalance among duct paths and lead to select optimal fan performance. To verify the validity and effectiveness of the proposed design method, an example for HVAC system design including noise analysis is demonstrated.

Inflow Noise Characteristics of the Sensor in Low Wave Number Region Using Transfer Function (전달함수를 이용한 저파수 영역에서의 센서 유입 소음 특성 연구)

  • Park, Ji-hye;Lee, Jongkil;Shin, Ku-kyun;Cho, Chi-yong
    • 대한공업교육학회지
    • /
    • v.34 no.1
    • /
    • pp.238-251
    • /
    • 2009
  • The noise itself that affects the sensor array is defined as the noise which happens in the place where the system is installed and the circumference noise which comes from the ocean. The array structure for detecting acoustic signal in the underwater effected turbulent layer flow noise. In this paper to design the conformal array spectral density function was introduced and several cases of flow induced noise which affect transfer function were simulated. Modified Corcos wall pressure model was used as turbulent boundary layer flow noise. The effect of noise has been reduced as integrated sum of transfer function has been reduced by decreasing elastomer thickness and density when kx is in low wave number area. Also the characteristics of transfer function by Corcos wall pressure displayed the product of frequency density function. This simulation results can be applied to the conformal array design in unmmaned underwater vehicle in the near future.

Thermographic Detection of Surface Crack Using Holomorphic Function of Thermal Field

  • Kim, No-Hyu;Lim, Zong-Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.3
    • /
    • pp.296-301
    • /
    • 2012
  • This paper describes an analytic method for infrared thermography to detect surface cracks in thin plates. Traditional thermographic method uses the spatial contrast of a thermal field, which is often corrupted by noise in the experiment induced mainly by emissivity variations of target surfaces. This study developed a robust analytic approach to crack detection for thermography using the holomorphic function of a temperature field in thin plate under steady-state thermal conditions. The holomorphic function of a simple temperature field was derived for 2-D heat flow in the plate from Cauchy-Riemann conditions, and applied to define a contour integral that varies depending on the existence and strength of singularity in the domain of integration. It was found that the contour integral at each point of thermal image reduced the noise and temperature variation due to heat conduction, so that it provided a clearer image of the singularity such as cracks.

Computer Simulation for Noise Source Identification and Application to Vehicle Using Complex Acoustic Intensity Method (복소음향 인텐시티법을 이용한 소음원검출의 시뮬레이션 및 실차응용)

  • O, Jae Ung;Kim, Sang Heon;An, Ji Hun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.171-171
    • /
    • 1997
  • Sound intensity distributions and energy flow in the near field of dipole source system and flat plate were investigated. First, the effectiveness of complex acoustic intensity was proved by using mathmatical and experimental methods in order to indentify noise sources and transmission paths of dipole field which is effected by the presence of neighbouring coherent sources. Next, analytical complex acoustic intensity method was discussed and the characteristics and energy flow of sound induced from the plate are clarified. The velocity of plate obtained from Finite Element Method was used for calculation of complex acoustic intensity in the near field. Finally experimental complex acoustic intensity method was applied to a passenger car. It can be seen that complex acoustic intensity method using both of active and reactive intensity is vital in devising a strategy for the identification and the reduction of vibration and noise.

Computer Simulation for Noise Source Identification and Application to Vehicle Using Complex Acoustic Intensity Method (복소음향 인텐시티법을 이용한 소음원검출의 시뮬레이션 및 실차응용)

  • 오재응;김상헌;안지훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.159-171
    • /
    • 1997
  • Sound intensity distributions and energy flow in the near field of dipole source system and flat plate were investigated. First, the effectiveness of complex acoustic intensity was proved by using mathmatical and experimental methods in order to inden- tify noise sources and transmission paths of dipole field which is effected by the presence of neighbouring coherent sources. Next, analytical complex acoustic intensity method was discussed and the characteristics and energy flow of sound induced from the plate are clarified. The velocity of plate obtained from Finite Element Method was used for calculation of complex acoustic intensity in the near field. Finally experimental complex acoustic intensity method using both of active and reactive intensity is vital in devising a strategy for the identification and the reduction of vibration and noise.

  • PDF