• Title/Summary/Keyword: Flow Field Visualization

Search Result 354, Processing Time 0.026 seconds

Micro-PIV Analysis of Electro-osmotic Flow inside Microchannels (마이크로 채널 내부 전기삼투 유동에 대한 PIV유동 해석)

  • Kim Yang-Min;Lee Sang-Joon
    • Journal of the Korean Society of Visualization
    • /
    • v.1 no.2
    • /
    • pp.47-51
    • /
    • 2003
  • Microfluidic chips such as lab-on-a-chip (LOC) include micro-channels for sample delivery, mixing, reaction, and separation. Pressure driven flow or electro-osmotic flow (EOF) has been usually employed to deliver bio-samples. Having some advantages of easy control, the flow characteristics of EOF in microchannels should be fully understood to effectively control the electro-osmotic pump for bio-sam-pie delivery. In this study, a micro PIV system with an epifluorescence inverted microscope and a cooled CCD was used to measure velocity fields of EOF in a glass microchannel and a PDMS microchannel. The EOF velocity fields were changed with respect to electric charge of seeding particles and microchannel materials used. The EOF has nearly uniform velocity distribution inside the microchannel when pressure gradient effect is negligible. The mean streamwise velocity is nearly proportional to the applied electric field. Glass microchannels give better repeatability in PIV results, compared with PDMS microchannels which are easy to fabricate and more suitable for PIV experiments.

  • PDF

Echo-PIV: in vivo Flow Measurement Technique (에코 PIV: in vivo 유동 측정기법)

  • kim Hyoung-Bum;Hertzberg Jean;Shandas Robin
    • Journal of the Korean Society of Visualization
    • /
    • v.3 no.1
    • /
    • pp.26-35
    • /
    • 2005
  • The combination of ultrasound echo images with digital particle image velocimetry (DPIV) method has resulted in a two-dimensional, two-component velocity field measurement technique appropriate for opaque flow conditions including blood flow in clinical applications. Advanced PIV processing algorithms including an iterative scheme and window of offsetting were used to increase spatial resolution. The optimum concentration of the ultrasound contrast agent used for seeding was explored. Velocity validation tests in fully developed laminar pipe flow and pulsatile flow showed good agreement with both optical PIV measurements and the known analytic solution. These studies indicate that echo PIV is a promising technique for the non-invasive measurement of velocity profiles and shear stress.

  • PDF

An experimental analysis of the fluid flow in an automobile HVAC system using a PIV technique (PIV기법을 이용한 차량용 공조 시스템 내부유동에 대한 실험적 연구)

  • Ji, Ho-Seong;Kim, Bo-Ram;Lee, Sang-Joon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.92-96
    • /
    • 2007
  • Internal flow characteristics for an automobile HVAC have been investigated using a high-resolution PIV technique. The PIV system consists of a 2-head Nd:YAG laser(125 mJ), a high-resolution CCD camera($2K\;{\times}\;2K$), optics and a synchronizer. An automobile HVAC module was used directly. Only the casing was remodeled transparently for capturing flow image and laser sheet beam illumination. Time-averaged velocity field were measured in three temperature control mode. For three temperature control modes, the internal flow characteristics for an automobile HVAC system were evaluated from PIV results..

  • PDF

Development Robust Video Stabilization algorithm based Opticla Flow (Optical flow를 이용한 영상의 흔들림 보정 알고리듬 개발)

  • Cho, Gyeong-Rae;Doh, Deog-Hee;Kim, Hong-Yeob;Jin, Gwang-Ja;Kim, Do-Hyun
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.3
    • /
    • pp.66-69
    • /
    • 2019
  • An image compensating algorithm with high-vibration movement is proposed, using optical flow and the Kalman Filter. The temporal motion vector field is calculated by Optical flow and suspicious vectors are removed or adjusted by the Gaussian interpolation method. The high-vibrated vector filled is stabilized by the Kalman filter. Lastly, compensated images are obtained by affine transformation. This proposed algorithm gives good compensated video images on high-vibration situations.

4-D PTV

  • Doh Deog Hee;OKAMOTO Koji
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.33-40
    • /
    • 2004
  • A 4D-PTV system was constructed. The measurement system consists of three high-speed high-definition cameras(1k x 1k, 2000fps), Nd-Yag laser(2000Hz) and a host computer. The GA-3D-PTV algorithm was used for completing the measurement system. The 4D-PTV is capable of probing the spatial distribution of velocity vectors of the flow field overcoming the temporal resolution of the characteristic turbulence length scales of the measured flow fields. A horizontal impinged jet flow (H/D=7) was measured. The Reynolds number is about 33,000. Spatial temporal evolution of the jet flow was examined and physical properties such as spatial distributions of vorticity and turbulent kinetic energy were obtained with the constructed.

  • PDF

An Experimental Study of the Effect of Flow on Flame Propagation in a Constant-Volume Combustion Chamber (정적연소기내 유동형태가 화염전파에 미치는 영향 연구)

  • Jeong, D.S.;Oh, S.M.;Suh, S.W.;Chang, Y.J.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.2
    • /
    • pp.136-145
    • /
    • 1995
  • The aim of this study is to gain a better understanding of the effect of a flow motion on the flame development by means of an optically-accessible constant-volume combustion chamber and the visualization technique of a combustion flame. At first, the characteristics of a flame propagation are investigated in the combustion field of the two kinds of flow conditions such as a quiescent and a flowing condition, and methane-air mixture is used as fuel. Then the same investigation is performed in two flow configurations : bulk flow motion type and turbulence generating type. In this study, the combustion phenomena are analyzed by measuring the combustion pressure, flame propagation speed, mean velocity, turbulent intensity, and mass fraction burned.

  • PDF

Experimental and Numerical Flow Visualization on Detailed Flow Field in the Post-surgery Models for the Simulation of the Inferior Turbinectomy (하비갑개 수술 후 비강 모델 내의 세부 유동장의 실험 및 전산 유동가시화)

  • Chang, Ji-Won;Heo, Go-Eun;Kim, Sung-Kyun
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.3
    • /
    • pp.65-70
    • /
    • 2011
  • Three major physiological functions of nose can be described as air-conditioning, filtering and smelling. Detailed knowledge of airflow characteristics in nasal cavities is essential to understanding of the physiological and pathological aspects of nasal breathing. In our laboratory, a series of experimental investigations have been conducted on the airflows in normal and abnormal nasal cavity models by means of PIV under both constant and periodic flow conditions. In this work, more specifically experimental and numerical results on the surgically modified inferior turbinate model were presented. With the high resolution CT data and a careful treatment of the model surface under the ENT doctor's advice yielded quite sophisticated cavity models for the PIV experiment. Physiological nature of the airflow was discussed in terms of velocity distribution and vortical structure for constant inspirational flow. Since the inferior and middle turbinate are key determinants of nasal airflow, the turbinectomy obviously altered the main stream direction. This phenomenon may cause local changes in physiological function and the flow resistance.

Study on the Measurement of Fluid Velocity Within a Small Droplet - Compensation of Refracted Image (미소 액적 내부 유동의 속도측정에 관한 연구 - 굴절영상의 이미지 보정)

  • Heo, Young-Gun;Jeon, Young-Hun;Suh, Yong-Kweon
    • Journal of the Korean Society of Visualization
    • /
    • v.7 no.2
    • /
    • pp.42-46
    • /
    • 2010
  • In this paper we report the method of visualizing and measuring the fluid flow within a small droplet of millimeter size. We use a vertical laser sheet in visualization of the micrometer size and special attention is given to the arrangement of microscope to obtain clear images. Then we use a PIV technique to measure the velocity of the internal flow from the images taken. Since the droplet is of spherical shape, the images represent highly deteriorated picture of the real objects due to the refraction phenomenon. In order to compensate the refraction, we in this study developed two kinds of methods for the real velocity. In the first method, the refracted images are directly used to obtain the velocity in the image space, and then the velocity is transformed to the real space. In the second method the images are first transformed to the real-space objects, and then the PIV is used to measure the velocity field. We compared the two results to prove the usefulness of the compensation technique.

Flow Visualization and Unstructured Grid Computation of Flow over a High-Speed Projectile (고속탄자 유동의 가시화 실험 및 비정렬격자 계산)

  • 이상길;최서원;강준구;임홍규;백영호;김두연;강호철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.12-20
    • /
    • 1998
  • Exter ballistics of a typical high-speed projectile is studied through a flow-visualization experiment and an unstructured grid Navier-Srokes computation. Experiment produced a schlieren photograph that adequately shows the characteristic features of this complex flow, namely two kinds of oblique cone shocks and turbulent wake developing into the downstream. A hybrid scheme of finite volume-element method is used to simulate the compressible Reynolds-Averaged Navier-Stok- es solution on unstructured grids. Osher's approximate Riemann solver is used to discretize the cinvection term. Higher-order spatial accuracy is obtained by MUSCL extension and van Albada ty- pe flux limiter is used to stabilize the numerical oscillation near the solution discontinuity. Accurate Gakerkin method is used to discretize the viscous term. Explict fourth-order Runge-Kutta method is used for the time-stepping, which simplifies the application of MUSCL extension. A two-layer k-$\varepsilon$ turbulence model is used to simulate the turbulent wakes accurately. Axisymmetric folw and two-dimensional flow with an angle of attack have been computed. Grid-dependency is also checked by carrying out the computation with doubled meshes. 2-D calculation shows that effect of angle of attack on the flow field is negligible. Axi-symmetric results of the computation agrees well with the flow visualization. Primary oblique shock is represented within 2-3 meshes in numerical results, and the varicose mode of the vortex shedding is clearly captured in the turbulent wake region.

  • PDF

Three-Dimensional Data Visualization Program Combined with Position Tracking System Using Stereo Cameras (스테레오 카메라에 의한 위치 추적과 3차원 데이터 후처리 프로그램의 연동)

  • Kim, Byoung-Soo;Seo, Jin-Won;Lee, Bong-Ju
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.114-119
    • /
    • 2006
  • Data post-processing programs are used for analysis and visualization of the data obtained from computational fluid methods or flow field experiments. In this paper 3D data visualization system which combines a data visualization program with position tracking system using stereo cameras is introduced. This system offers virtual environment for visualization and analysis of three dimensional data.