• Title/Summary/Keyword: Flow Efficiency

Search Result 4,870, Processing Time 0.04 seconds

The Effect of Flow Distribution on Transient Thermal Behaviour of CDPF during Regeneration (배기의 유속분포가 CDPF의 재생 시 비정상적 열적 거동에 미치는 영향)

  • Jeong, Soo-Jin;Lee, Jeom-Joo;Choi, Chang-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.10-19
    • /
    • 2009
  • The working of diesel particulate filters(DPF) needs to periodically burn soot that has been accumulated during loading of the DPF. The prediction of the relation between an uniformity of gas velocity and soot regeneration efficiency with simulations helps to make design decisions and to shorten the development process. This work presents a comprehensive combined 'DOC+CDPF' model approach. All relevant behaviors of flow fluid are studied in a 3D model. The obtained flow fields in the front of DPF is used for 1D simulation for the prediction of the thermal behavior and regeneration efficiency of CDPF. Validation of the present simulation are performed for the axial and radial direction temperature profile and shows goods agreement with experimental data. The coupled simulation of 3D and 1D shows their impact on the overall regeneration efficiency. It is found that the flow non-uniformity may cause severe radial temperature gradient, resulting in degrading regeneration efficiency.

An Investigation on Enhencing Thermal Efficiency of a Hydrogen Fueled 2 Stroke Free-piston Engine with Reverse Uni-flow Scavenging (역단류 소기방식을 갖는 2행정 프리피스톤 수소기관의 열효율 향상에 관한 연구)

  • Byun, Chang-Hee;Baek, Dae-Ha;Lee, Jong-Tae
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.3
    • /
    • pp.299-304
    • /
    • 2011
  • A hydrogen fueled 2 stroke free-piston engine with reverse uni-flow scavenging have a advantageous structure for the backfire occurrence, but it can reduce thermal efficiency by the circuit-flow to go through a exhaust-port. In this research, varied boost pressure, SVOT and exhaust pressure are used in a 2stroke free-piston engine with hydrogen fueled for studying the possibility of increasing thermal efficiency of free-piston hydrogen engine. As a result, to increase thermal efficiency of free-piston are suitable to supply the mixture after port closed the exhaust rater than to use the scanvenging. And it was increased by the exhaust pressure, to achieve it must be used the lean-mixture at SVOT aBDC $34^{\circ}$.

Thermal Performance of Air receiver with a Change of Flow direction for Dish Solar Collector (공기식 흡수기의 유동 방향에 따른 $5kW_t$급 접시형 태양열 집열기의 열성능 분석)

  • Seo, Joo-Hyun;Kang, Kyung-Moon;Lee, Ju-Han;Oh, Sang-June;Seo, Tae-Beom
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.182-185
    • /
    • 2008
  • The thermal performance of air receiver with a change of flow direction for dish solar collector. This system is installed and operated in Incheon, Korea. The thermal capacity of the system is about 5 kW thermal. The aperture diameter of the cylindrical-shape receiver which is made of stainless steel is 100 mm, and the height is 210 mm. Experiments are being carried out to investigate the thermal performance variation of the receivers with several design parameters such as the shape of the receiver, the flow directions and the flow rate of air. First, air flows into the upper part of the receiver, which is the opposite side of the aperture. After the air flows through the inside receiver, that goes out of the receiver through 3 exits which are located near the aperture. Second, air flows into the backside of the receiver, Which is the forward side of the aperture. After the air flows through the inside receiver, that goes out of the receiver through 1 exit. The results show that the system efficiency and receiver efficiency increase as the volume flow rate increases as expected.

  • PDF

Optimal Design of Sheath Flow Nozzle Acceleration Section for Improving the Focusing Efficiency (집속효율 향상을 위한 외장유동노즐 가속 구간의 최적설계 연구)

  • Lee, Jin-Woo;Jin, Joung-Min;Kim, Youn-Jea
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.763-772
    • /
    • 2019
  • There is a need to use sheath flow nozzle to detect bioaerosol such as virus and bacteria due to their characteristics. In order to enhance the detection performance depending on nozzle parameters, numerical analysis was carried out using a commercial code, ANSYS CFX. Eulerian-lagrangian approach method is used in this simulation. Multiphase flow characteristics between primary fluid and solid were considered. The detection performance was evaluated based on the results of flow field in nozzle chamber such as focusing efficiency and swirl strength. In addition, Latin hypercube sampling(LHS) of design of experiment(DOE) was used for generating a near-random sampling. Then, the acceleration section is optimized using response surface method(RSM). Results show that the optimized model achieved a 6.13 % in a focusing efficiency and 11.47 % increase in swirl strength over the reference model.

A study on Applicable to Advanced treatment of using Side Stream Plug-Flow Reactor (효과적 공간활용을 위한 Side Stream Plug-Flow Reactor를 이용한 하수 고도처리 공정 적용에 관한 연구)

  • Kim, samju;Hyun, InHwan;Dockko, Suk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.3
    • /
    • pp.367-372
    • /
    • 2008
  • This study configured the conventional $A^2O$ (Anaerobic-Anoxic-Aerobic bioreactor) system which the fixed media immersed into the anoxic reactor(Named PFR system : Plug Flow Reactor) for evaluating the removal efficiency of nitrogen in the wastewater. The experimental equipment was a cylinder which was consist of 4 pleated PE Pipes(Length 330M, Diameter 100mm) including 2 rope shape media. As a result, the average effluent T-N removal efficiency of the conventional $A^2O$ system was 17.9, 40.3, 50.6, 44.6% in each mode, but the average effluent T-N removal efficiency of the PFR system could achieve 38.8, 57.1, 71.8, 65.4% in each mode. It indicated that the PFR system caused to the increasing of C/N ratio that effected to the increasing of the denitrification efficiency. Not only the effective T-N removal efficiency but also the controllable install space will give advantages for retrofitting of the wastewater treatment plant with the conventional treatment system to the PFR system.

Performance test of 100 W linear compressor

  • Ko, J.;Koh, D.Y.;Park, S.J.;Kim, H.B.;Hong, Y.J.;Yeom, H.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.3
    • /
    • pp.35-39
    • /
    • 2013
  • In this paper, we present test results of developed 100 W class linear compressor for Stirling-type pulse tube refrigerator. The fabricated linear compressor has dual-opposed configuration, free piston and moving magnet type linear motor. Power transfer, efficiency and required pressure waveform are predicted with designed and measured specifications. In experiments, room temperature test with flow impedance is conducted to evaluate performance of developed linear compressor. Flow impedance is loaded to compressor with metering valve for flow resistance, inertance tube for flow inertance and buffer volumes for flow compliance. Several operating parameters such as input voltage, current, piston displacement and pressure wave are measured for various operating frequency and fixed input current level. Behaviors of dynamics and performance of linear compressor as varying flow impedance are discussed with measured experimental results. The developed linear compressor shows 124 W of input power, 86 % of motor efficiency and 60 % of compressor efficiency at its resonant operating condition.

Floop: An efficient video coding flow for unmanned aerial vehicles

  • Yu Su;Qianqian Cheng;Shuijie Wang;Jian Zhou;Yuhe Qiu
    • ETRI Journal
    • /
    • v.45 no.4
    • /
    • pp.615-626
    • /
    • 2023
  • Under limited transmission conditions, many factors affect the efficiency of video transmission. During the flight of an unmanned aerial vehicle (UAV), frequent network switching often occurs, and the channel transmission condition changes rapidly, resulting in low-video transmission efficiency. This paper presents an efficient video coding flow for UAVs working in the 5G nonstandalone network and proposes two bit controllers, including time and spatial bit controllers, in the flow. When the environment fluctuates significantly, the time bit controller adjusts the depth of the recursive codec to reduce the error propagation caused by excessive network inference. The spatial bit controller combines the spatial bit mask with the channel quality multiplier to adjust the bit allocation in space to allocate resources better and improve the efficiency of information carrying. In the spatial bit controller, a flexible mini graph is proposed to compute the channel quality multiplier. In this study, two bit controllers with end-to-end codec were combined, thereby constructing an efficient video coding flow. Many experiments have been performed in various environments. Concerning the multi-scale structural similarity index and peak signal-to-noise ratio, the performance of the coding flow is close to that of H.265 in the low bits per pixel area. With an increase in bits per pixel, the saturation bottleneck of the coding flow is at the same level as that of H.264.

Fluid Dynamic Efficiency of an Anatomically Correct Total Cavopulmonary Connection: Flow Visualizations and Computational Fluid Dynamic Studies

  • Yun, S.H.;Kim, S.Y.;Kim, Y.H.
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.2 no.1
    • /
    • pp.11-16
    • /
    • 2004
  • Both flow visualizations and computational fluid dynamics were performed to determine hemodynamics in a total cavopulmonary connection (TCPC) model for surgically correcting congenital heart defects. From magnetic resonance images, an anatomically correct glass model was fabricated to visualize steady flow. The total flow rates were 4, 6 and 8L/min and flow rates from SVC and IVC were 40:60. The flow split ratio between LPA and RPA was varied by 70:30, 60:40 and 50:50. A pressure-based finite-volume software was used to solve steady flow dynamics in TCPC models. Results showed that superior vena cava(SVC) and inferior vena cava(IVC) flow merged directly to the intra-atrial conduit, creating two large vortices. Significant swirl motions were observed in the intra-atrial conduit and pulmonary arteries. Flow collision or swirling flow resulted in energy loss in TCPC models. In addition, a large intra-atrial channel or a sharp bend in TCPC geometries could influence on energy losses. Energy conservation was efficient when flow rates in pulmonary branches were balanced. In order to increase energy efficiency in Fontan operations, it is necessary to remove a flow collision in the intra-atrial channel and a sharp bend in the pulmonary bifurcation.

  • PDF

Dredging Material High Efficiency Transport Technology Test by Using the Electro Magnetic Field and Development of the Technical Design Manual (전자기장을 이용한 준설토 고효율 이송기술 실증 및 기술 지침 개발)

  • Kim, Dong-Chule;Kim, Yu-Seung;Yea, Chan-Su;Kim, Sun-Bin;Park, Seung-Min
    • Journal of Coastal Disaster Prevention
    • /
    • v.5 no.4
    • /
    • pp.173-182
    • /
    • 2018
  • As the research about increasing the efficiency of dredging soil transport, the technology, which reduce the friction between pipe wall and fluid in the pipe and disturbed generating pipe blockage, has been developed. So for the purpose of applying this technology to real construction site, main test has been tried at the real scale test in field. As a test result, this paper will show 30% flow efficiency increasing by permitted electro magnetic force to the pipe. And test result was evaluated as a ultra sonic velocity profiler. To propose the design technique and the execution manual of the high efficiency dredging material transport technic, this research have confirmed flow status changing depending on a soil material kind under electro-magnetic field and analyze the effect of electro-magnetic field which affects to each dredged soil material transportation. For achieving this research, EMF(Electro-Magnetic Field) generator is installed on the dredger(20,000HP) and through monitored flow status, dredging soil flow rate and sampled material specification is confirmed. Also dredger operating condition is measured and dredger power for soil transportation, hydraulic gradient and flow rate are compared, as transportation efficiency is calculated by this parameter, it is possible to check transportation efficiency improvement depending on each dredged soil material under electro-magnetic field. To verify the technique of dredged soil transfer using electromagnetic field, which is the core technique of the high efficiency dredged soil transfer, and the technique of expert system for pipeline transfer and the flow state. This could lead to a verification of transfer efficiency according to the characteristics of the dredged soil (sand, clay, silt) and the transfer distance (5km, 10km, 15km), which is planned to be used for a technology development of pump power reduction and long-distance transfer applying the high efficiency dredged soil transfer technology.

Collection Efficiency Enhancement of Spray Tower Scrubber by Introducing Electrospray with Two-flow Nozzle (분무탑식 스크러버에서 이류체 정전분무에 의한 집진효율의 향상)

  • Hwang, You-Seong;Kim, Jong-Ho;Kim, Jong-Hyeon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.3
    • /
    • pp.339-345
    • /
    • 2010
  • There have been a number of efforts to satisfy national emission regulations and reduce the amount of emitted air pollutants. There are several air pollution control devices, however, only wet scrubber is efficiently used to remove particulate matters and gaseous pollutants, even if it has minimum collection efficiency in the particle size range of $0.1{\sim}1{\mu}m$. This study aimed to improve the collection efficiency of a spray tower type scrubber by introducing an electrospray system with two-flow nozzle. We found that the collection efficiency of a spray tower type scrubber was similar to that of a conventional wet scrubber. However, installation of an electrospray system in the scrubber resulted in drastic further improvement of collection efficiency comparing to that of a conventional scrubber, which is 26%, 35.2%, and 45.1% at the liquid to gas ratio of 0.26 $L/m^3$ and 19.9%, 35.1%, and 42.5% at 0.34 $L/m^3$ for the applied voltage of -30 kV, -35 kV, and -40 kV, respectively. Therefore, we found that the introduction of an electrospray system is very effective to improve the collection efficiency of a spray tower type scrubber.