• Title/Summary/Keyword: Flow Correction Factor

Search Result 76, Processing Time 0.024 seconds

Analysis of Convective Boiling Heat Transfer for Refrigerant Mixtures in Annular Horizontal Flow (혼합냉매의 환상 유동 증발열전달 해석)

  • Sin, Ji-Yeong;Kim, Min-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.2
    • /
    • pp.720-729
    • /
    • 1996
  • An analysis of convective boiling heat transfer for refrigerant mixtures is performed for an annular flow to investigate the degradation of the heat transfer rate. Annular flow is selected in this study because a great portion of the evaporator in the refrigeration and air conditioning system is known to be in the annular flow regime. Mass transfer effect due to composition difference between liquid and vapor is included in this analysis, which is considered to be one of driving forces for the mass transfer at the interface. Due to the concentration gradient at the interface the mass transfer is interfered, so is the evaporative heat transfer at the interface. The mass transfer resistance makes the interface temperature slightly higher and, as a result, the heat transfer coefficients decrease compared with those without mass transfer effects. The degradatioin of the heat transfer rate reaches its maximum at a certain composition. The composition difference between vapor core and vapor at the interface has a direct effect on the temperature difference between the vapor core and the interface and the degradation of the heat transfer rate. Correction factor $C_{F}$ for the mixture effects is added to the correlation for pure substances and the flow boiling heat transfer coefficients can be calculated using the modified equation.n.

Ultrafiltration Characteristics of Poly(vinyl Alcohol) Solution and Theoretical Investigations (Poly(vinyl Alcohol) 용액의 한외여과 특성과 이론적 고찰)

  • 이상화;이영철
    • Membrane Journal
    • /
    • v.6 no.4
    • /
    • pp.203-212
    • /
    • 1996
  • The operating parameters influencing on limiting flux was investigated in the ultrafiltration of PVA, and a new model, which is based on the Amiar model using the concept of heat transfer coefficient, was devised to overcome the limitation of gel-layer model. Using polysulfone plate-unit membrane (MWCO=20,000) and hollow-fiber membrane (MWCO= 30,000), ultrafiltration characteristics of PVA was examined with the variation of operating parameters such as cross flow velocity, transmembrane pressure, temperature, and PVA concentration. According to experimental results, the ultrafiltration of PVA through polysulfone membrane is mainly controlled by well-known phenomena of concentration polarization caused by gel-layer formation. On the contrary, in hollow fiber membrane was observed upward limiting flux which can not be explained by gel-layer model. New model was applied to predict the upward limiting flux behavior with partial satisfaction. The application of new model including viscosity correction factor, however, revealed that PVA ultrafiltration is closely related to the viscosity of permeating fluid.

  • PDF

Algorithm for the Low-Voltage Feeder Design in Consideration of Voltage Drop (전압강하를 고려한 저압간선의 설계 알고리즘)

  • 고영곤;최홍규;조계술
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.3
    • /
    • pp.84-92
    • /
    • 2002
  • A size of low-voltage conductor cables is determined by the voltage drop of a system the cable impedance and the cable ampacity based on temperature correction factor in accordance with the condition of cable installation. Therefore, the proper temperation correction factor according to the condition of cable installation should be applied to determining the cable ampacity and also the skin effect and proximity effect, along with the kind and size of conductor and the condition of cable installation, should be properly considered to analyze the proper value of resistance and the reactance of the conductors. This paper addresses the systematic design flow for determining the size of low voltage level con여ctor cables in calculating the voltage drop of a power system and proposes a new improved the calculating formula what error should be minimized in comparison with the general formula and which can be applied in design work for determining the size of conductor cables.

Development of a novel fatigue damage model for Gaussian wide band stress responses using numerical approximation methods

  • Jun, Seock-Hee;Park, Jun-Bum
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.755-767
    • /
    • 2020
  • A significant development has been made on a new fatigue damage model applicable to Gaussian wide band stress response spectra using numerical approximation methods such as data processing, time simulation, and regression analysis. So far, most of the alternative approximate models provide slightly underestimated or overestimated damage results compared with the rain-flow counting distribution. A more reliable approximate model that can minimize the damage differences between exact and approximate solutions is required for the practical design of ships and offshore structures. The present paper provides a detailed description of the development process of a new fatigue damage model. Based on the principle of the Gaussian wide band model, this study aims to develop the best approximate fatigue damage model. To obtain highly accurate damage distributions, this study deals with some prominent research findings, i.e., the moment of rain-flow range distribution MRR(n), the special bandwidth parameter μk, the empirical closed form model consisting of four probability density functions, and the correction factor QC. Sequential prerequisite data processes, such as creation of various stress spectra, extraction of stress time history, and the rain-flow counting stress process, are conducted so that these research findings provide much better results. Through comparison studies, the proposed model shows more reliable and accurate damage distributions, very close to those of the rain-flow counting solution. Several significant achievements and findings obtained from this study are suggested. Further work is needed to apply the new developed model to crack growth prediction under a random stress process in view of the engineering critical assessment of offshore structures. The present developed formulation and procedure also need to be extended to non-Gaussian wide band processes.

A parameter calibration method for PFC simulation: Development and a case study of limestone

  • Xu, Z.H.;Wang, W.Y.;Lin, P.;Xiong, Y.;Liu, Z.Y.;He, S.J.
    • Geomechanics and Engineering
    • /
    • v.22 no.1
    • /
    • pp.97-108
    • /
    • 2020
  • The time-consuming and less objectivity are the main problems of conventional micromechanical parameters calibration method of Particle Flow Code simulations. Thus this study aims to address these two limitation of the conventional "trial-and-error" method. A new calibration method for the linear parallel bond model (CM-LPBM) is proposed. First, numerical simulations are conducted based on the results of the uniaxial compression tests on limestone. The macroscopic response of the numerical model agrees well with the results of the uniaxial compression tests. To reduce the number of the independent micromechanical parameters, numerical simulations are then carried out. Based on the results of the orthogonal experiments and the multi-factor variance analysis, main micromechanical parameters affecting the macro parameters of rocks are proposed. The macro-micro parameter functions are ultimately established using multiple linear regression, and the iteration correction formulas of the micromechanical parameters are obtained. To further verify the validity of the proposed method, a case study is carried out. The error between the macro mechanical response and the numerical results is less than 5%. Hence the calibration method, i.e., the CM-LPBM, is reliable for obtaining the micromechanical parameters quickly and accurately, providing reference for the calibration of micromechanical parameters.

Predicting Double-Blade Vertical Axis Wind Turbine Performance by a Quadruple-Multiple Streamtube Model

  • Hara, Yutaka;Kawamura, Takafumi;Akimoto, Hiromichi;Tanaka, Kenji;Nakamura, Takuju;Mizumukai, Kentaro
    • International Journal of Fluid Machinery and Systems
    • /
    • v.7 no.1
    • /
    • pp.16-27
    • /
    • 2014
  • Double-blade vertical axis wind turbines (DB-VAWTs) can improve the self-starting performance of lift-driven VAWTs. We here propose the quadruple-multiple streamtube model (QMS), based on the blade element momentum (BEM) theory, for simulating DB-VAWT performance. Model validity is investigated by comparison to computational fluid dynamics (CFD) prediction for two kinds of two-dimensional DB-VAWT rotors for two rotor scales with three inner-outer radius ratios: 0.25, 0.5, and 0.75. The BEM-QMS model does not consider the effects of an inner rotor on the flow speed in the upwind half of the rotor, so we introduce a correction factor for this flow speed. The maximum power coefficient predicted by the modified BEM-QMS model for a DB-VAWT is thus closer to the CFD prediction.

Numerical Study on the Particle Movement of a Particle-Laden Impinging Jet (고체 입자가 부상된 충돌제트에서의 입자 거동에 관한 수치해석적 연구)

  • Lee, Jae-Beom;Seo, Yeong-Seop;Lee, Jeong-Hui;Choe, Yeong-Gi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.12
    • /
    • pp.1802-1812
    • /
    • 2001
  • The purpose of this study is to analyze numerically the movement of particles included in turbulent fluid flow characteristics of metallic surfaces. To describe fluid flew, the incompressible Navier-Stokes equation discretized by the finite volume method were solved on the non-orthogonal coordinates with non-staggered variable arrangement, and the k-$\xi$ turbulence model was adapted. After fluid flow was calculated, particle movement was predicted from the Lagrangian approaches. Non-essential complexities were avoided by assuming that the particles had spherical shapes and the Stoke's drag formula only consisted of external farces acting upon them. In order to validate the numerical calculations, the results were compared with the experimental data reported in literature and agreed well with them. The drag force coefficient equation showed better agreement with the experimental data in the prediction of particle movement than the correction factor equation. Impact velocity and impact angle increased as inlet turbulence intensity decreased, relative jet height was lower. or the Reynolds number was larger.

Comparison of Bin Averaging Method and Least Square Method for Site Calibration (단지교정을 위한 빈평균방법과 최소자승법의 비교)

  • Yoo, Neung-Soo;Nam, Yun-Su;Lee, Jeong-Wan;Lee, Myeong-Jae
    • Journal of Industrial Technology
    • /
    • v.25 no.B
    • /
    • pp.157-164
    • /
    • 2005
  • Two methods, the bin averaging method and least square method, are often used in calibrating wind turbine test sites. The objective of this work was to determine a better method to predict the wind speed at wind turbine installing point. The calibration was done at the test site on a complex terrain located in Daegwallyeong, Korea. It was performed for two different cases based on the IEC 61400-12 power performance measurement standard. The wind speeds averaged for 10 minutes ranged between 4 m/s and 16 m/s. The wind-direction bins of each meteorological mast were 10 degrees apart, and only the bins having data measured for more than 24 hours were employed for the test site calibration. For both cases, the two methods were found to yield almost same results which estimated real wind speed very closely.

  • PDF

AN IMPROVED HEAT TRANSFER CORRELATION FOR DEVELOPING POST-DRYOUT REGION IN VERTICAL TUBES

  • NGUYEN, NGOC HUNG;MOON, SANG-KI
    • Nuclear Engineering and Technology
    • /
    • v.47 no.4
    • /
    • pp.407-415
    • /
    • 2015
  • A developing post-dryout region is characterized by significant heat transfer enhancements compared with the fully developed post-dryout region. The heat transfer enhancements are mainly due to upstream disturbance and entrained droplets in the region immediately downstream of the critical heat flux location. In this paper, an improved heat transfer correlation is developed for the developing post-dryout regions in vertical tubes over a wide range of flow conditions. The correlation represents a correction factor for the fully developed film-boiling look-up table to be applied to the developing post-dryout region. The new correlation significantly improves the heat transfer prediction in the developing post-dryout regions and provides very good agreement with the experimental data.

Universal power converter using High-Speed Switching (고속 스위칭에 의한 만능 전려변화기 구성)

  • Isnanto, Isnanto;Budhi, Prayoga;Choi, Woo-seok;Park, Sung-jun
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.337-338
    • /
    • 2013
  • Combination the several type of single phase power conversion utilized simply topology are proposed in this paper. Totally four kind of converter are investigated, they are Boost AC/AC Converter, Buck AC/AC Converter, Boost AC/DC Converter, and Buck DC/AC Converter. Two types action mode are presented to determine the functional of circuit. First is AC chopper action mode, representation of the AC/AC converter. AC chopper action mode offered the sinusoidal current waveform, better power factor, faster dynamics, and smaller input/output filter. They present high robustness, offer safe commutation and have high efficiency. The second is full bridge action mode, determined the transformation AC to DC power and otherwise. Four switching devices and one magnetic contactor will establish the mode operation of circuit and manage the flow of power proceed in proper. The correction and advance of the kind of converter are verified by simulation.

  • PDF