• Title/Summary/Keyword: Flow Correction Device

Search Result 17, Processing Time 0.022 seconds

Automatic Jitter Evaluation Method from Video using Optical Flow (Optical Flow를 사용한 동영상의 흔들림 자동 평가 방법)

  • Baek, Sang Hyune;Hwang, WonJun
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1236-1247
    • /
    • 2017
  • In this paper, we propose a method for evaluating the uncomfortable shaking in the video. When you shoot a video using a handheld device, such as a smartphone, most of the video contains unwanted shake. Most of these fluctuations are caused by hand tremors that occurred during shooting, and many methods for correcting them automatically have been proposed. It is necessary to evaluate the shake correction performance in order to compare the proposed shake correction methods. However, since there is no standardized performance evaluation method, a correction performance evaluation method is proposed for each shake correction method. Therefore, it is difficult to make objective comparison of shake correction method. In this paper, we propose a method for objectively evaluating video shake. Automatically analyze the video to find out how much tremors are included in the video and how much the tremors are concentrated at a specific time. In order to measure the shaking index, we proposed jitter modeling. We applied the algorithm implemented by Optical Flow to the real video to automatically measure shaking frequency. Finally, we analyzed how the shaking indices appeared after applying three different image stabilization methods to nine sample videos.

A Flow Channel Design on IR Window Cooling Device (적외선 윈도우 냉각장치 유로 설계)

  • Park, Youn-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.6
    • /
    • pp.559-566
    • /
    • 2011
  • This paper presents the flow passage design for a window cooling device, which have a conical poppet valve and an emissive orifice. Computational flow analysis and experiment are conducted according to the poppet strokes. The results show satisfactory flow characteristics that pressure is reduced enough to endure material strength and the flow does not choked inside window. The correction factor of discharge coefficients is found between 2-dimensional analysis and experiments, which is applied to control coolant flow rates of the window cooling device.

A Study on Performance Characteristics of Drag Improvement Device(1-D Trajectory Correction Device) (항력증가장치 (1-D Trajectory Correction Device)의 성능 특성에 관한 연구)

  • Jung Soo-In;Kim Kui-Soon;Hong Kung-Mung;Beak Ki-Bong;Yun Won-Kun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.146-154
    • /
    • 2004
  • In this study, numerical analysis has been performed to investigate the flow characteristics of a drag improvement device which is designed to achieve accurate impact point. The drag increase due to drag improvement device has been analyzed. And the effect of spread angle and location of drag improvement device has also been investigated. The drag improvement device with 20 degree spread angle increased the drag 3.5 times. The corresponding weight of the device is found out to be 26g.

  • PDF

Influence on heat transfer due to uneven flow (유동 불균일이 전열관 튜브에 미치는 영향)

  • Chong, Chae-Hon;Song, Jung-Il
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.273-279
    • /
    • 2008
  • The purpose of this study is not only to evaluate thermal performance but also to find the stress behavior of heat transfer tubes under the part load operation in Heat Recovery Steam Generator. Flow analysis was performed to know the behavior of exhaust gas from gas turbine and thermal performance was calculated using distribution of hot exhaust velocity. In addition, tubes temperature during operation were gathered from actual plant to verify the uneven flow distribution under part load operation. Stress analysis was performed using tubes temperature data gathered from actual plant under both part and full load operations to know the stress behavior of tubes.

  • PDF

Production of Spirometer 'The Spirokit' and Performance Verification through ATS 24/26 Waveform (휴대형 폐기능 검사기 'The Spirokit'의 제작 및 ATS 24/26파형을 통한 성능검증)

  • Byeong-Soo Kim;Jun-Young Song;Myung-Mo Lee
    • Journal of Korean Physical Therapy Science
    • /
    • v.30 no.3
    • /
    • pp.49-58
    • /
    • 2023
  • Background: This study aims to examine the useful- ness of the portable spirometer "The Spirokit" as a clinical diagnostic device through technology introduction, precision test, and correction. Design: Technical note Methods: "The Spirokit" was developed using a propeller-type flow rate and flow rate measurement method using infrared and light detection sensors. The level of agreement between the Pulmonary Waveform Generator and the measured values was checked to determine the precision of "The Spirokit", and the correction equation was included using the Pulmonary Waveform Generator software to correct the error range. The analysis was requested using the ATS 24/26 waveform recognized by the Ministry of Food and Drug Safety and the American Thoracic Society for the values of Forced Voluntary Capacity (FVC), Forced Expiratory Volume in 1second (FEV1), and Peak Expiratory Flow (PEF), which are used as major indicators for pulmonary function tests. All tests were repeated five times to derive an average value, and FVC and FEV1 presented accuracy and PEF presented accuracy as the result values. Results: FVC and FEV1 of 'The Spirokit' developed in this study showed accuracy within ± 3% of the error level in the ATS 24 waveform. The PEF value of 'The Spirokit' showed accuracy within the error level ± 12% of the ATS 26 waveform. Conclusion: Through the results of this study, the precision of 'The Spirokit' as a clinical diagnosis device was identified, and it was confirmed that it can be used as a portable pulmonary function test that can replace a spirometer.

Development of a LoRaWAN-based Real-time Ocean-current Draft Observation System using a multi-GPS Triangulation Method Correction Algorithm (다중 GPS 삼각측량보정법을 이용한 LoRaWAN기반 실시간 해류관측시스템 개발)

  • Kang, Young-Gwan;Lee, Woo-Jin;Yim, Jae-Hong
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.64-68
    • /
    • 2022
  • Herein, we propose a LoRaWAN-based small draft system that can measure the ocean current flow (speed, direction, and distance) in real time at the request of the Coast Guard to develop a device that can promptly find survivors at sea. This system has been implemented and verified in the early stages of rescue after maritime vessel accidents, which are frequent. GPS signals often transmit considerable errors, so correction algorithms using the improved triangulation method algorithm are required to accurately indicate the direction of currents in real time. This paper is structured in the following manner. The introduction section elucidates rescue activities in the case of a maritime accident. Chapter 2 explains the characteristics and main parameters of the GPS surveying technique and LoRaWAN communication, which are related studies. It explains and expands on the critical distance error correction algorithm for GPS signals and its improvement. Chapter 3 discusses the design and analysis of small draft buoys. Chapter 4 presents the testing and validation of the implemented system in both onshore and offshore environments. Finally, Section 5 concludes the study with the expected impact and effects in the future.

The Flow Noise Characteristics on Hydrophone Installation Method in the Cavitation Tunnel (캐비테이션 터널에서의 수중청음기 설치 방법에 따른 유동소음 특성)

  • J.W. Ahn;Y.H. Park;K.S. Kim;J.T. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.1
    • /
    • pp.1-7
    • /
    • 2002
  • As the existing noise measuring device was affected the flow-field and structural vibration directly, new experimental device was required. Two Hydrophone Boxes are designed and their performances are investigated. The noise level of the KRISO cavitation tunnel is compared with those of the other cavitation tunnels which have been designed for the noise study. The present experimental results show the possibility of the full-scale prediction for propeller cavitation noise and the improvement of the measurement performance at the range of low-frequency.

Optimal Design of Flow Measurement System Using Turbine Flowmeter (터빈유량계를 이용한 유량 측정 시스템의 최적 설계)

  • Kim, Hong-Tark;Kim, Boo-Il
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.1
    • /
    • pp.77-84
    • /
    • 2018
  • The turbine flowmeter is selected for high precision and reproducibility at the time of flow rate measurement but causes various uncertainty factors of measurement in the difference between the standard environmental condition at calibration and the environmental condition at the site. Also, a reliable interpolation method is required for use in sections other than calibrated measurement values. Therefore, in this paper, in order to improve the reliability of the flow rate measurement, we designed and manufactured a device that accurately measures the output signal of the turbine flowmeter, interpolates the value of the calibrated result value, and corrects the temperature change in real time We confirmed the reliability of the measurement at the site to carry out the performance verification.

A Study for Optimal Design of the AIG to Improve the Performance of DeNOx Facilities Installed in Combined Cycle Plant (복합화력 탈질설비 성능향상을 위한 암모니아 주입 그리드의 최적설계 방안에 관한 연구)

  • Kim, Kwang-Chu;Park, Man-Heung;Yoon, Jun-Kyu;Lim, Jong-Han
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.12
    • /
    • pp.811-820
    • /
    • 2007
  • A Study on the optimal design of the AIG(Ammonia Injection Grid) to improve the performance of DeNOx facilities in the HRSG(Heat Recovery Steam Generator) was performed using the CFD analysis. On the basis of the flow analysis results in the case that the AIG in the HRSG was not installed, the numerical analyses according to the positions of AIG, injection angles of nozzle and the control of ammonia injection quantity were carried out. The standard deviation according to factors was calculated for quantitative comparison. As the results, the AIG in the HRSG should be installed in the position that the uniform flow field shows through the exact flow analysis in the previous of the AIG design and installation. In the case the AIG has already been installed and non uniform flow distribution shows, it is recommended that flow correction device or KoNOx catalyst should be used. Otherwise, the control of ammonia injection angle or the ammonia injection quantity using the velocity profile analysis is demanded to accomplish the optimal performance.

Surgical Correction of Left Ventricular Assist Device Outflow Graft Obstruction Caused by a Wrapped Expanded Polytetrafluoroethylene Graft: A Case Report

  • Sung Min Kim;Ilkun Park;Siwon Oh;Hyo Won Seo;Ga Hee Jeong;Jun Ho Lee;Su Ryeun Chung;Kiick Sung;Wook Sung Kim;Yang Hyun Cho
    • Journal of Chest Surgery
    • /
    • v.57 no.4
    • /
    • pp.413-417
    • /
    • 2024
  • A 70-year-old man with dilated cardiomyopathy underwent left ventricular assist device (LVAD) implantation, using a HeartWare ventricular assist device, as a bridge to candidacy. After 26 months, computed tomography (CT) angiography indicated stenosis in the LVAD outflow graft; however, the patient was asymptomatic, prompting a decision to manage his condition with close monitoring. Ten months later, the patient presented with dizziness and low-flow alerts. Subsequent CT angiography revealed a critical obstruction involving the entire LVAD outflow graft. The patient underwent emergency surgery, during which an organized seroma causing the graft obstruction was found between a wrapped expanded polytetrafluoroethylene (ePTFE) graft and a Dacron outflow graft. The covering of the outflow graft was removed, along with the organized seroma. Following removal of the ePTFE wrap and decompression of the outflow graft, normal LVAD flow was reestablished. The practice of wrapping the outflow graft with synthetic material, commonly done to facilitate later redo sternotomy, may pose a risk for outflow graft obstruction.