• 제목/요약/키워드: Flow Cone Flow

검색결과 288건 처리시간 0.022초

Modeling the effects of additives on rheological properties of fresh self-consolidating cement paste using artificial neural network

  • Mohebbi, Alireze;Shekarchi, Mohammad;Mahoutian, Mehrdad;Mohebbi, Shima
    • Computers and Concrete
    • /
    • 제8권3호
    • /
    • pp.279-292
    • /
    • 2011
  • The main purpose of this study includes investigation of the rheological properties of fresh self consolidating cement paste containing chemical and mineral additives using Artificial Neural Network (ANN) model. In order to develop the model, 200 different mixes are cast in the laboratory as a part of an extensive experimental research program. The data used in the ANN model are arranged in a format of fourteen input parameters covering water-binder ratio, four different mineral additives (calcium carbonate, metakaolin, silica fume, and limestone), five different superplasticizers based on the poly carboxylate and naphthalene and four different Viscosity Modified Admixtures (VMAs). Two common output parameters including the mini slump value and flow cone time are chosen for measuring the rheological properties of fresh self consolidating cement paste. Having validated the model, the influence of effective parameters on the rheological properties of fresh self consolidating cement paste is investigated based on the ANN model outputs. The output results of the model are then compared with the results of previous studies performed by other researchers. Ultimately, the analysis of the model outputs determines the optimal percentage of additives which has a strong influence on the rheological properties of fresh self consolidating cement paste. The proposed ANN model shows that metakaolin and silica fume affect the rheological properties in the same manner. In addition, for providing the suitable rheological properties, the ANN model introduces the optimal percentage of metakaolin, silica fume, calcium carbonate and limestone as 15, 15, 20 and 20% by cement weight, respectively.

Atomization Characteristics of Intermittent Multi-Hole Diesel Spray Using Time-Resolved PDPA Data

  • Lee, Jeekuen;Shinjae Kang;Park, Byungjoon
    • Journal of Mechanical Science and Technology
    • /
    • 제17권5호
    • /
    • pp.766-775
    • /
    • 2003
  • The intermittent spray characteristics of a multi-hole diesel nozzle with a 2-spring nozzle holder were investigated experimentally. Without changing the total orifice exit area, the hole number of the multi-hole nozzle varied from 3 (d$\_$n/=0.42 mm) to 5 (d$\_$n/=0.32 mm). The time-resolved droplet diameters of the spray including the SMD (Saute. mean diameter) and the AMD (arithmetic mean diameter), injected intormittently from the multi-hole nozzles into still ambient ai., were measured by using a 2-D PDPA (phase Doppler particle analyze.). The 5-hole nozzle spray shows the smaller spray cone angle, the decreased SMD distributions and the small difference between the SMD and the AMD, compared with that of the 3-hole nozzle spray. From the SMD distributions with the radial distance, the spray structure can be classified into the three regions : (a) the inner region showing the high SMD distribution , (b) the mixing flow region where the shea. flow structure would be constructed : and (c) the outer region formed through the disintegration processes of the spray inner region and composed of fine droplets. Through the SMD distributions along the spray centerline, it reveals that the SMD decreases rapidly after showing the maximum value in the vicinity of the nozzle tip. The SMD remains the constant value near the Z/d$\_$n/=166 and 156.3 for the 3-hole and 5-hole nozzles, which illustrate that the disintegration processes of the 5-hole nozzle spray proceed more rapidly than that of the 3-hole nozzle spray.

유체에 의해 유발된 전단력이 치은 섬유아세포 유전자 발현 변화에 미치는 영향에 관한 연구 (GENE EXPRESSION AFTER THE APPLICATION OF THE FLUID-INDUCED SHEAR STRESS ON THE GINGIVAL FIBROBLAST)

  • 정미향;최제용;채창훈;김성곤;남동석
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제27권5호
    • /
    • pp.424-430
    • /
    • 2005
  • The oral cavity is humid environment mainly due to the continuous salivary flow. The reaction of oral mucosa to fluid flow is important for homeostasis and pathogenesis. The objective of this study is the screening the change of gene expression after the application of fluid induced shear stress (FISS) on the gingival fibroblast using cDNA microarray assay. The immortalized human gingival fibroblasts were grown and FISS was applied using a cone viscometer at a rotational velocity of 40 rpm, respectively for periods of 2 and 4 hours. The synthesis of cDNA was done from the extracted total RNA and cDNA microarray assay was done subsequently. The genes that showed over 1.6 in the Cy3/Cy5 or the Cy5/Cy3 value were regarded as genes influenced significantly by the FISS application ion (/M/>0.7). The " RUNX-1" was increased its expression in 2 hours group and " RUN and SH3 domain containing 1" was increased its expression in 4 hours group. The "CC020415", "cyclin L1", "interferon regulatory factor1", "early growth response 1", "immediate early response 2", and "immediate early response 3" genes were increased their expression in 2 and 4 hours after FISS application. In conclusion, we could find many genes that were probably related to the FISS application. Interestingly, most of them were placed in similar molecular pathways and these findings improve the reliability of chip data and usefulness in overall screening. From this experiment, we could find many items for further study and it will make improvement in the understanding of intracellular events in response to FISS.

Experimental Investigations on Upper Part Load Vortex Rope Pressure Fluctuations in Francis Turbine Draft Tube

  • Nicolet, Christophe;Zobeiri, Amirreza;Maruzewski, Pierre;Avellan, Francois
    • International Journal of Fluid Machinery and Systems
    • /
    • 제4권1호
    • /
    • pp.179-190
    • /
    • 2011
  • The swirling flow developing in Francis turbine draft tube under part load operation leads to pressure fluctuations usually in the range of 0.2 to 0.4 times the runner rotational frequency resulting from the so-called vortex breakdown. For low cavitation number, the flow features a cavitation vortex rope animated with precession motion. Under given conditions, these pressure fluctuations may lead to undesirable pressure fluctuations in the entire hydraulic system and also produce active power oscillations. For the upper part load range, between 0.7 and 0.85 times the best efficiency discharge, pressure fluctuations may appear in a higher frequency range of 2 to 4 times the runner rotational speed and feature modulations with vortex rope precession. It has been pointed out that for this particular operating point, the vortex rope features elliptical cross section and is animated of a self-rotation. This paper presents an experimental investigation focusing on this peculiar phenomenon, defined as the upper part load vortex rope. The experimental investigation is carried out on a high specific speed Francis turbine scale model installed on a test rig of the EPFL Laboratory for Hydraulic Machines. The selected operating point corresponds to a discharge of 0.83 times the best efficiency discharge. Observations of the cavitation vortex carried out with high speed camera have been recorded and synchronized with pressure fluctuations measurements at the draft tube cone. First, the vortex rope self rotation frequency is evidenced and the related frequency is deduced. Then, the influence of the sigma cavitation number on vortex rope shape and pressure fluctuations is presented. The waterfall diagram of the pressure fluctuations evidences resonance effects with the hydraulic circuit. The influence of outlet bubble cavitation and air injection is also investigated for low cavitation number. The time evolution of the vortex rope volume is compared with pressure fluctuations time evolution using image processing. Finally, the influence of the Froude number on the vortex rope shape and the associated pressure fluctuations is analyzed by varying the rotational speed.

지열발전을 위한 지열정 시멘트용 G-class시멘트와 일반 포틀랜드시멘트와의 유동성 비교실험 (An Experimental Comparison of the Fluidity of G-class cement with Portland cement)

  • 전종욱;원종묵;최항석
    • 한국지열·수열에너지학회논문집
    • /
    • 제8권2호
    • /
    • pp.1-8
    • /
    • 2012
  • The G-class cement is usually used for geothermal well grouting to protect a steel casing which is equipped in a geothermal well to transfer geothermal water from deep subsurface to ground surface. In geothermal grouting process, obtaining appropriate fluidity is extremely important in order to fill cement grout flawlessly. In this paper, a series of the V-funnel and Slump Flow test was performed on both of the Portland cement and the G-class cement in order to compare fluidity and filling ability of those kind of cements. In the result of V-funnel test, the fluidity of G-class cement was evaluated much better than the Portland cement at the water/cement ratio of 0.8. In the case of Slump Flow test, the fluidity of G- class cement was estimated slightly better than the Portland cement at both the water/cement ratio of 0.55 and 0.8. Even though the initial fluidity and filling ability of G-class cement were relatively higher than the Portland cement, the results could be considerably changed with time. The results show that the fluidity and filling ability for geothermal well cementation can be properly controlled with water content and additives for adverse geothermal well environment.

Experimental Study of the Multi-Row Disk Inlet

  • Maru, Yusuke;Kobayashi, Hiroaki;Kojima, Takoyuki;Sato, Tetsuya;Tanatsugu, Nobuhiro
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.634-643
    • /
    • 2004
  • In this paper are presented a concept of a new supersonic air inlet, which is designated a Multi-Row Disk (MRD) inlet, aiming at performance improvement under off-design conditions, and results of wind tunnel tests examined performance characteristics of the MRD inlet. The MRD inlet is frequently called ‘a skeleton inlet’ because of its appearance. The performance of a conventional axisymmetric inlet with a solid center body (spike) deteriorates under off-design Mach number conditions. It is due to the fact that total pressure recovery (TPR) governed by the throat area of inlet and mass capture ratio (MCR) governed by an incidence position of an oblique shock from the spike tip into the cowl can not be controlled independently in such air inlet. The MRD inlet has the spike that is composed of a tip cone and several disks arranged downstream of it, based on the experimental fact that several deep cavities on a conical surface have little negative effect on the boundary layer growth. The overall spike length of the MRD inlet is adjustable to the given flight speed by changing space between disks so that a spillage flow can be controlled independently from controlling the throat area. It could be made clear from the result of wind tunnel tests that the MRD inlet improves TPR by 10% compared with a conventional inlet with a solid spike under off-design conditions.

  • PDF

준 1차원 모델을 적용한 이중연소 램제트 해석 (Analysis of Dual Combustion Ramjet Using Quasi 1D Model)

  • 최종호;박익수;길현용;황기영
    • 한국추진공학회지
    • /
    • 제17권6호
    • /
    • pp.81-88
    • /
    • 2013
  • Taylor-Maccoll 유동관계식과 준 1차원 모델을 적용한 구성품 기반의 이중램제트 추진기관 모델 개발에 대해 기술하였다. 이중램제트 흡입구는 Taylor Maccoll 유동관계식을 적용하여 콘 각도 $25^{\circ}$ 형상을 갖는 흡입구에 대해 아음속 및 초음속 흡입구 모델을 구현하였으며 예 연소가스를 초음속 연소기로 전달하는 기능의 가스발생기는 Lumped 모델을 적용하여 모델을 구현하였고 요구되는 노즐목 크기에 대해 기술하였다. 초음속 연소기의 경우 준 1차원 모델을 적용하여 위치에 따른 마하수 변화, 온도변화 및 압력변화 등을 제시하였다. 또한 금번 모델을 이용하여 당량비 및 압력회복율을 고려한 연료량 조절모델에 따른 추력과 비추력을 계산하여 그 결과를 제시하였다.

가스터빈엔진을 모의하기 위한 시뮬레이션덕트 설계 연구 (Design Study of a Simulation Duct for Gas Turbine Engine Operations)

  • 임주현;김선제;김명호;김유일;김용련
    • 한국추진공학회지
    • /
    • 제23권1호
    • /
    • pp.124-131
    • /
    • 2019
  • 가스터빈엔진 고도시험설비 운용특성탐색 및 설비튜닝 연구와 유량/추력 측정방안 검증을 위한 엔진 시뮬레이션덕트 설계 연구를 수행하였다. 설비 운용특성 검증은 배압/추력 제어가 필요하므로 Spikecone type의 가변노즐을 적용하였으며, 유량검증용 ISO 쵸킹노즐의 추가장착이 가능토록 설계하였다. 시뮬레이션덕트 주유로 면적은 1D Sizing으로 결정하고, 노즐면적변화에 따른 시뮬레이션덕트 내부 유동특성은 1D/CFD 해석으로 조사하였으며, 해석결과로부터 설비운용특성 탐색 및 유량/추력 검증시험을 위한 공기공급부 시험조건을 도출하였다. Spike 노즐 구동부는 시험 전운용 구간에서 공력하중조건을 견디도록 모터, 리니어 볼스크류 등의 부품모델을 선정하였으며, 시험 시 10 mm/s의 이송속도가 가능하도록 설계하였다.

A study on the action mechanism of internal pressures in straight-cone steel cooling tower under two-way coupling between wind and rain

  • Ke, S.T.;Du, L.Y.;Ge, Y.J.;Yang, Q.;Wang, H.;Tamura, Y.
    • Wind and Structures
    • /
    • 제27권1호
    • /
    • pp.11-27
    • /
    • 2018
  • The straight-cone steel cooling tower is a novel type of structure, which has a distinct aerodynamic distribution on the internal surface of the tower cylinder compared with conventional hyperbolic concrete cooling towers. Especially in the extreme weather conditions of strong wind and heavy rain, heavy rain also has a direct impact on aerodynamic force on the internal surface and changes the turbulence effect of pulsating wind, but existing studies mainly focus on the impact effect brought by wind-driven rain to structure surface. In addition, for the indirect air cooled cooling tower, different additional ventilation rate of shutters produces a considerable interference to air movement inside the tower and also to the action mechanism of loads. To solve the problem, a straight-cone steel cooling towerstanding 189 m high and currently being constructed is taken as the research object in this study. The algorithm for two-way coupling between wind and rain is adopted. Simulation of wind field and raindrops is performed with continuous phase and discrete phase models, respectively, under the general principles of computational fluid dynamics (CFD). Firstly, the rule of influence of 9 combinations of wind sped and rainfall intensity on flow field mechanism, the volume of wind-driven rain, additional action force of raindrops and equivalent internal pressure coefficient of the tower cylinder is analyzed. On this basis, the internal pressures of the cooling tower under the most unfavorable working condition are compared between four ventilation rates of shutters (0%, 15%, 30% and 100%). The results show that the 3D effect of equivalent internal pressure coefficient is the most significant when considering two-way coupling between wind and rain. Additional load imposed by raindrops on the internal surface of the tower accounts for an extremely small proportion of total wind load, the maximum being only 0.245%. This occurs under the combination of 20 m/s wind velocity and 200 mm/h rainfall intensity. Ventilation rate of shutters not only changes the air movement inside the tower, but also affects the accumulated amount and distribution of raindrops on the internal surface.

구속 스트레스가 백서 타액선 조직 내의 clusterin 변화에 미치는 영향 (The Effect of Repeated Restraint Stress on Clusterin Change of the Rat Salivary Glands)

  • 이고운;강수경;전양현;홍정표
    • Journal of Oral Medicine and Pain
    • /
    • 제37권2호
    • /
    • pp.81-91
    • /
    • 2012
  • 타액이 대부분의 구강 내 질환에 영향을 주는 것으로 알려져 있다. 반대로, 여러 전신적 조건이 타액의 흐름에 영향을 줄 수 있으며 이는 구강 건조증을 야기할 수 있는데, 특히 사회심리적 스트레스는 타액의 부족과 구강 건조증의 병인으로 큰 역할을 할 수 있다. 많은 연구에서 자율신경계 반응에 의한 스트레스의 타액선에의 거시적 효과에 중점을 두어왔다. 본 연구에서는 구속 스트레스 조건 하에서 백서(Rat) 이하선에서 clusterin의 변화를 관찰하였다. 연구를 위해, 10마리의 백서를 이용, 3그룹으로 구분하였다. 1) 그룹 1: 대조군으로 rat 2마리 2) 그룹 2 : 실험대조군으로 2마리를 두어 2시간 동안 restraint cone을 사용하여 구속스트레스를 부여 3)그룹 3 : 실험군으로 6마리를 두어 매일 2시간씩 restraint cone을 사용하여 구속 스트레스를 부여 백서는 스트레스 부여 후 즉시(그룹 2) 희생하거나 24, 48, 72 시간 후 희생하여 이하선을 절취하였다. Western blotting과 면역조직화학검사를 시행하여 다음과 같은 결과를 얻었다. 1. 백서의 이하선에서 clusterin이 약간 증가하였고 구속 스트레스 부여 직후 타액선관에서 명확하게 관찰되었다. 2. 백서의 이하선에서 clusterin은 구속 24시간, 48시간 후에 매우 감소되었으며, 타액선관에서도 소량 관찰되었다. 3. 백서의 이하선에서 clusterin은 구속 72시간 후 현저하게 증가되었으며, 역시 타액선관에 밀집하여 증가되었다.