• Title/Summary/Keyword: Flow Cone Flow

Search Result 288, Processing Time 0.021 seconds

Development and Performance Analysis of Gas Generator with Plunger-type Flow Control Valve for Ducted Rocket : Part II (Plunger 타입 유량조절장치를 적용한 덕티드 로켓용 가스발생기 개발 및 성능분석 : Part II)

  • Han, Seongjoo;Lee, Jungpyo;Cho, Sungbong;Khil, Taeock;Kim, Minkyum
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.3
    • /
    • pp.87-92
    • /
    • 2021
  • In this study, a numerical approach was utilized to observe the phenomena in the ground combustion test of a gas generator for a ducted rocket with a plunger-type flow control device. The design factors were also identified through the analysis. It was observed that the pressure increase without the adhesion of the combustion product at the discharge pipe was quite similar to the analysis assuming a cone-shaped erosive burning effect. The pressure increase in most cases was similar to the analysis results when assuming the change in discharge pipe area due to the adhesion of combustion products. Moreover, it was also established that for a given grain shape and discharge flow area, the effect of the adhesion of combustion products has a significant effect on the combustion chamber pressure for cases over n=0.45.

Nanoleakage of apical sealing using a calcium silicate-based sealer according to canal drying methods

  • Yoon-Joo Lee;Kyung-Mo Cho;Se-Hee Park;Yoon Lee;Jin-Woo Kim
    • Restorative Dentistry and Endodontics
    • /
    • v.49 no.2
    • /
    • pp.20.1-20.13
    • /
    • 2024
  • Objectives: This study investigated the nanoleakage of root canal obturations using calcium silicate-based sealer according to different drying methods. Materials and Methods: Fifty-two extracted mandibular premolars with a single root canal and straight root were selected for this study. After canal preparation with a nickel-titanium rotary file system, the specimens were randomly divided into 4 groups according to canal drying methods (1: complete drying, 2: blot drying/distilled water, 3: blot drying/NaOCl, 4: aspiration only). The root canals were obturated using a single-cone filling technique with a calcium silicate-based sealer. Nanoleakage was evaluated using a nanoflow device after 24 hours, 1 week, and 1 month. Data were collected twice per second at the nanoscale and measured in nanoliters per second. Data were statistically analyzed using the Kruskal-Wallis and Mann-Whitney U-tests (p < 0.05). Results: The mean flow rate measured after 24 hours showed the highest value among the time periods in all groups. However, the difference in the flow rate between 1 week and 1 month was not significant. The mean flow rate of the complete drying group was the highest at all time points. After 1 month, the mean flow rate in the blot drying group and the aspiration group was not significantly different. Conclusions: Within the limitations of this study, the canal drying method had a significant effect on leakage and sealing ability in root canal obturations using a calcium silicate-based sealer. Thus, a proper drying procedure is critical in endodontic treatment.

Examination on Fire Extinguishing Performance of Full Cone and Hollow Cone Twin-fluid Atomizers: Effects of Supply Gas and Water Mist (중실원추형 및 중공원추형 2유체 미립화기의 화재 소화 성능 검토: 공급 기체와 미분무 영향)

  • Kim, Dong Hwan;Lee, Chi Young
    • Fire Science and Engineering
    • /
    • v.33 no.5
    • /
    • pp.28-36
    • /
    • 2019
  • In the present study, the effects of supply gas and water mist on the heptane pool fire extinguishing performance were investigated using the full cone and hollow cone twin-fluid atomizers. Air or nitrogen of 30 lpm (Liter per minute; L/min) was used as the supply gas, and the experiments were conducted under the water flow rate conditions of 0 lpm (i.e., discharge of air or nitrogen only) and 0.085 lpm (i.e., discharge of water mist with supply gas). Experimental results confirmed that the use of water mist discharge with the supply gas and full cone spray pattern reduced the fire extinguishing time as compared to that of only supply gas discharge and hollow cone spray pattern. In addition, for the discharge of water mist using the full cone twin-fluid atomizer, water mist significantly affected fire extinguishing performance, whereas the effect of the supply gas was less pronounced. On the other hand, for the discharge of water mist using the hollow cone twin-fluid atomizer, the fire extinguishing time was remarkably reduced by the supply of nitrogen, as compared with that of air, indicating that the supply gas as well as water mist can significantly affect fire extinguishing performance.

Spray Characteristics of Closed-type Swirl Injectors with Varying Swirl Chamber Geometry (Closed-type 스월 인젝터의 스월 챔버 형상에 따른 분무특성 연구)

  • Chung, Yunjae;Jeong, Seokkyu;Oh, Sukil;Yoon, Youngbin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.4
    • /
    • pp.8-14
    • /
    • 2015
  • This study has been done as a preliminary work in the process of confirming the modeling and calculation results on the dynamic characteristics of closed-type swirl injector which were performed by Ismailov et al. in Purdue university. Closed-type swirl injectors with replaceable swirl chamber parts were designed and manufactured. The steady state spray characteristics of closed-type swirl injector with varying swirl chamber length and diameter were verified. Mass flow rate was measured with a mass flow meter installed in front of the injector, and liquid film thickness was measured by Lefebvre's method with electrodes installed at the orifice of the injector. Variation of spray cone angle and break-up length were investigated from the spray images captured under different manifold pressure conditions.

The Effect of Reynolds Number on the Three-Dimensional Flow Measurements with a Two-Stage Cone-Type Five-Hole Probe in a Non-Nulling Mode (Reynolds 수가 2단 원추형 5공프로브를 이용한 3차원 유동 측정에 미치는 영향 - 저속 유동장에서의 보정 결과 -)

  • Lee, Sang-U;Jeon, Sang-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.1
    • /
    • pp.27-38
    • /
    • 2002
  • The effects of Reynolds number on the non-nulling calibrations of a cone-type ave-type probe in low-speed flows have been investigated at Reynolds numbers of 2.04$\times$10$^3$, 4.09$\times$10$^3$and 6.13$\times$10$^3$. The calibration is conducted at the pitch and yaw angles in ranges between -35 degrees and 35 degrees with an angle interval of 5 degrees. In addition to the calibration coefficients, reduced pitch and yaw angles, static and total pressures, and velocity magnitude are obtained through a typical non-nulling reduction procedure. The result shows that each calibration coefficient, in general, is a function of both the pitch and yaw angles, so that the pre-existing calibration data in a nulling mode are not enough in accounting far the full non-nulling calibration characteristics. Due to interference of the probe stem, the calibration coefficient are more sensitive to Reynolds number at positive pitch angles than at negative ones. The calibration data reduced in this study may serve as a guide line in the estimation of uncertainty intervals resulted from the Reynolds number effects at low Reynolds numbers.

Effect of Sediment Size On Air Injection and Flowing Aspect of Groundwater Saturated Zone (대수층 토양입자크기에 따른 공기분사 흐름 양상)

  • 이준호;박갑성
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.3
    • /
    • pp.13-22
    • /
    • 2003
  • Laboratory scale study for an air injection and flowing aspect of groundwater saturated zone was conducted for three sediment grains (AMG 0.34, 1.38, 3.89 mm diameter). Air flow for AMG (Average Modal diameter Grains) 0.34 mm diameter grain size provides indication of pattern of channelized air flow in saturated zone and expansion state in above saturated zone. Maximum area of influence is approximately l5.2%/$\textrm{m}^2$for AMG of 0.34 mm diameter. For AMG of 1.38 mm and 3.89 mm modal diameter grains, air flow are pervasive air flow, forming a symmetrical cone of influence around the injection point. Maximum areas affected are 37%/$\textrm{m}^2$for AMG 1.38 mm diameter and 30%/$\textrm{m}^2$for AMG 3.89 mm diameter. AMG 1.38 mm and 3.89 mm diameter grains show onset of collapse and approach to steady state in above saturated zone, respectively. In this study, optimal sites for in situ air sparging, may be grain diameters between about AMG 1.5-2.5 mm diameter.

Numerical Study on the Baffle Structure for Determining the Flow Characteristic in Small Scale SCR System (소형 SCR 시스템 내 유동 제어를 위한 Baffle의 구조 결정에 관한 수치해석적 연구)

  • Park, Mi-Jung;Chang, Hyuk-Sang;Ha, Ji-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.9
    • /
    • pp.862-869
    • /
    • 2010
  • Numerical analysis was done to evaluate the gas flow distribution in small scale SCR system which has $2.4{\times}2.4{\times}3.1\;m^3$ in volume and 25,300 Sm3/hr in flue gas flow capacity. Various types of baffles proposed for controlling the flow uniformity were evaluated by the CFD analysis to find the optimal geometry of the baffle in the SCR system. By installing baffles in the SCR system, the RMS (%) value was raised up to 6.2% compared with the baffle-uninstalled state. The effect of baffle thicknesses on the RMS (%) value was not shown within 0 and 8 mm in thickness, but the RMS (%) value was raised by 2.5% in 10 mm of baffles thickness, which causes the unstability in flow. By comparison between the shape of baffles, it is known that the lattice type baffle has better performance in controlling the flow uniformity than the circular truncated cone type baffle or mixer type baffle. RMS (%) values have more that 10% difference according to the shape of baffle type.

Experimental Investigation of Local Half-cone Scouring Against Dam under the Effect of Localized Vibrations in the Sediment Layers

  • Dodaran, Asgar Ahadpour;Park, Sang Kil;Mardashti, Asadollah;Noshadi, Mehrzad;Afsari, Mohammad
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.107-113
    • /
    • 2013
  • Most natural river reach are approximately balanced with respect to sediment inflow and outflow. Dam construction dramatically alters this balance, creating an impounded river reach characterized by extremely low flow velocities and efficient sediment trapping. The impounded reach will accumulate sediment and lose storage capacity until a balance is again achieved, which would normally occur after the impoundment has become "filled up" with sediment and can no longer provide water storage and other benefits. This paper aims to investigate the sediment removal process in dam reservoir using simultaneously pressure flushing operation and vibrator machine. The main objective of this study is to identify the effect of vibrator in flushing cone dimensions. To achieve the objectives of present study, laboratory test have conducted under different hydraulic conditions such as two bottom outlets with diameter equal to 2" and 3", five discharges 0.23, 0.53, 1.21, 1.53 and 2.1 lit/s and only one water depth above the center of bottom outlets. Using the vibrator machine mounted into the reservoir and close to the bottom outlet, different frequency e.g. 20, 35 and 50 HZ, have been introduced to the deposited sediment at the vicinity of outlet. The results indicate that the volume and width of flushing cone are strongly affected by frequency of vibrations. The results indicate that the volume and width of flushing cone are strongly affected by frequency of vibrations.

Key Parameters and Research Review on Counterflow Jet Study in USA for Drag Reduction of a High-speed Vehicle (초고속 비행체 항력감소를 위한 미국의 분사 제트 연구 동향과 핵심 변수)

  • Kim, Jihong;Kang, Seungwon;Lee, Jaecheong;Huh, Hwanil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.1
    • /
    • pp.23-32
    • /
    • 2016
  • Various studies have been conducted for drag reduction of a high-speed vehicle by injecting counterflow jet from its nose cone. In this study, in order to obtain baseline data and key parameters for drag reduction method, the counterflow jet study of the USA is reviewed and summarized. The nose cone shapes of each study are hemisphere cylinder, truncated cone, and reentry capsule, and their test conditions are summarized accordingly. Key parameters for drag reduction are jet mach number, mass flow rate, and pressure ratio. Even though drag reduction effects show various results according to given test conditions, it is found that the drag reduction effect reaches up to 40~50%.

Characteristics of Multi staged Combustion on a Double-cone Partial Premixed Nozzle (이중 콘형 부분 예혼합 GT 노즐의 다단 연소특성)

  • Kim, Han Seok;Cho, Ju Hyeong;Kim, Min Kuk;Hwang, Jeongjae;Lee, Won June
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.1
    • /
    • pp.49-55
    • /
    • 2020
  • Experimental investigations were conducted to understand the multi-staged combustion characteristics of a swirl-stabilized double cone premixed burner nozzle used for industrial gas turbines for power generation. Multi-staged combustion is implemented by injecting the fuel through the existing manifold of the side slots as well as through the apex of the cone with two fuel injection angles which are slanted or axial. NOx and CO emissions, and wall temperature distributions were measured for various fuel distributions and operating conditions. Results show that NOx emissions are decreased when the fuel distribution to the apex is 3% of the total amount of fuel, which is due to more uniform fuel distribution inside the nozzle, hence less hot spots at the flame. NOx emissions are rather increased when the fuel distribution to the apex is 8% of the total amount of fuel for axial fuel injection by occurrence of flash back in premixing zone of burner.