• Title/Summary/Keyword: Floor diaphragm

Search Result 29, Processing Time 0.026 seconds

Structural response of a three-story precast concrete structure subjected to local diaphragm failures in a shake table test

  • Ilyas Aidyngaliyev;Dichuan Zhang;Robert Fleischman;Chang-Seon Shon;Jong Kim
    • Computers and Concrete
    • /
    • v.33 no.2
    • /
    • pp.195-204
    • /
    • 2024
  • Floor inertial forces are transferred to lateral force resisting systems through a diaphragm action during earthquakes. The diaphragm action requires floor slabs to carry in-plane forces. In precast concrete diaphragms, these forces must be carried across the joints between precast floor units as they represent planes of weakness. Therefore, diaphragm reinforcement with sufficient strength and deformability is necessary to ensure the diaphragm action for the floor inertial force transfer. In a shake table test for a three-story precast concrete structure, an unexpected local failure in the diaphragm flexural reinforcement occurred. This failure caused loss of the diaphragm action but did not trigger collapse of the structure due to a possible alternative path for the floor inertial force transfer. This paper investigates this failure event and its impact on structural seismic responses based on the shake table test and simulation results. The simulations were conducted on a structural model with discrete diaphragm elements. The structural model was also validated from the test results. The investigation indicates that additional floor inertial force will be transferred into the gravity columns after loss of the diaphragm action which can further result in the increase of seismic demands in the gravity column and diaphragms in adjacent floors.

Seismic response of torsional structures considering the possibility of diaphragm flexibility

  • Eivani, Hamed;Moghadam, Abdolreza S.
    • Structural Engineering and Mechanics
    • /
    • v.77 no.4
    • /
    • pp.463-472
    • /
    • 2021
  • Fully rigid floor diaphragm is one of the main assumptions that are widely used in common practices due to its simple application. However, determining the exact degree of diaphragms flexibility cannot be easily accomplished without finite element modeling, which is an expensive and time-consuming procedure. Therefore, it is always possible that apparently rigid diaphragms, based on prescriptive limitations of seismic codes, experience some degrees of flexibility during the earthquakes. Since diaphragm flexibility has more uncertainties in asymmetric-plan structures, this study focuses on errors resulting from probable floor diaphragm flexibility of torsionally restrained structures. The analytical models used in this study were single-story buildings with asymmetric plan and RC shear walls. Although floor system is not considered explicitly, a wide range of considered diaphragm flexibility, from fully rigid to quite flexible, allows the results to be generalizable to a lot of lateral load resisting systems as well as floor systems. It has been shown that in addition to previously known effects of diaphragm flexibility, presence of orthogonal side elements during design procedure with rigid diaphragm assumption and rapid reduction in their absorbed forces can also be an important source to increase errors due to flexibility. Accordingly, from the obtained results the authors suggest designers to consider the possibility of diaphragm flexibility and its adverse effects, especially in torsionally restrained systems in their common designs.

Effect of slab stiffness on floor response spectrum and fragility of equipment in nuclear power plant building

  • Yousang Lee;Ju-Hyung Kim;Hong-Gun Park
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.3956-3972
    • /
    • 2023
  • The floor response spectrum (FRS) is used to evaluate the seismic demand of equipment installed in nuclear power plants. In the conventional design practice of NPP structure, the FRS is simplified using the lumped-mass stick model (LMSM), assuming the floor slab as a rigid diaphragm. In the present study, to study the variation of seismic response in a floor, the FRSs at different locations were generated by 3-D finite element model, and the response was compared to that of the rigid diaphragm model. The result showed that the FRS significantly varied due to the large opening in a floor, which was not captured by the rigid diaphragm model. Based on the result, seismic fragility analysis was performed for the anchorage of a heat exchanger, to investigate the effect of location-dependent FRS disparity on the high confidence low probability of failure (HCLPF).

Lateral Behavior in Outrigger System of Tall Building Considering Floor Diaphragm (바닥 격막을 고려한 초고층 아웃리거 구조시스템의 수평거동)

  • Kim, Hyong-Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.45-52
    • /
    • 2018
  • The paper aimed to find out the lateral behavior of outrigger system in high-rise building considering floor diaphragm. To achieve this goal, a structural schematic design of 80 stories building was conducted by utilizing MIDAS-Gen. In this research, the key parameters of the structure analysis were the outrigger location in plan, the slab stiffness, the outrigger stiffness and the kind of diaphragm. For the purpose of this study, we analyzed and studied the lateral displacement in top floor, the story drift and the stress in slab. The research results indicated that the outrigger location in plan, the slab stiffness, the outrigger stiffness and the kind of diaphragm had an effect on lateral behavior in outrigger system of tall building. And the results of this analysis research can provided the assistance in getting the basic data of structure design for looking for the lateral behavior of outrigger system in the high-rise building.

Effect of Shear Wall Stiffness on Optimal Location of Core and Offset Outrigger Considering Floor Diaphragm (바닥 격막을 고려한 코어 및 오프셋 아웃리거 구조의 최적위치에 대한 전단벽 강성의 영향)

  • Kim, Hyong-Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.5
    • /
    • pp.37-47
    • /
    • 2019
  • The study purposed to investigate the optimal location of core and offset outrigger system considering floor diaphragm. To accomplish this aim, a structure design of 70 stories building was performed by using MIDAS-Gen. And the leading factors of the analysis research were the slab stiffness, the stiffness of shear wall and the outrigger position in plan. Based on the analysis results, we analyzed and studied the influences of the shear wall stiffness and the slab stiffness on optimal location of core and offset outrigger considering floor diaphragm. The results of the analysis study indicated whether the slab stiffness, the stiffness of shear wall and the outrigger position in plan had an any impact on optimal location in outrigger system of tall building. Also the paper results can give help in getting the structural engineering materials for looking for the optimal position of outrigger system in the high-rise building.

Efficient Analysis of Shear Wall Strustures with Pilotis considering the in-plane stiffness of the floor slabs (바닥슬래브의 면내강성을 고려한 필로티 구조물의 효율적인 거동분석)

  • Kim Hyun-Su;Kim Hye-Sook;Kim Hyun-Jung;Lee Dong-Guen
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.865-872
    • /
    • 2006
  • Recently, many apartment buildings in the shear wall system often has pilotis in the lower story to meet the architectural needs. If the lateral force resisting system consists of shear walls supported by columns and beams. the discontinuity at the lowest level with pilotis results in the vertical irregularity with strength and stiffness. So, there are needs to be considered tile analysis and design about column and beam bellow shear walls and the behavior and stress condition of structure by stiffness change being generated at shear walls. The purpose of this paper is to investigate the behavior of shear wall structures with pilotis using the floors modeled as rigid diaphragm or semi rigid diaphragm. Through analyses, after estimating values of the story drift, natural period, stress condition of shear walls and the forces of column, we inferred how the behavior of shear wall structures with pilotis was influenced by the floor stiffness.

  • PDF

Structural Characteristic of Beam-to-Column Connections in Rectangular CFT Structures Considering Concrete Filling (충전성을 개선한 각형CFT 기둥-보 접합부의 구조 특성)

  • Park, Je Young;Lee, Myung Jea
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.2
    • /
    • pp.187-196
    • /
    • 2013
  • CFT structures require a diaphragm to prevent buckling of steel at connections. An outer diaphragm has better concrete filling than a through diaphragm due to a large bore, but due to the larger size than the through diaphragm, it has poorer constructability and cooperation with building equipment. The building structure has a floor slab that was unified with the upper diaphragm, so the outer diaphragm was placed at the upper bound. Moreover, the through diaphragmwas placed at the lower connection to avoid obstruction of the building equipment. The CFT structure with the improved concrete filling showed the same structural behavior as the CFT structure with the use of the same type of diaphragms at the upper and lower connections.

Structural Behavior Characteristics Evaluation of Shear Wall Outrigger System Subject to Horizontal Loads (수평하중을 받는 전단벽 아웃리거 시스템의 거동특성 평가)

  • Kim, Ho-Soo;Lee, Han-Joo;Hong, Seok-Il;Lim, Young-Do
    • Proceeding of KASS Symposium
    • /
    • 2006.05a
    • /
    • pp.110-117
    • /
    • 2006
  • This study presents an effective stiffness-based optimal technique to consider floor rigid diaphragm action and a technique to evaluate the structural behavior characteristics and efficiency for tall shear wall outrigger system subject to horizontal loads. To this end, isoparametric plane stress element with rotational stiffness is used for shear wall element and stiffness gradient is calculated. Also, the approximation concept to solve effectively the large scaled problems, member grouping technique and resizing technique are considered. To verify the effectiveness and usefulness of this technique, the efficient evaluation method for three types of 50 story model with core and outrigger system is presented.

  • PDF

A study on the establishment of vibration conditions of a composite deck floor with panel heating systems for a steel structure (Panel heating을 적용한 철골조 건물의 합성테크 진동조건 설정에 관한 연구)

  • Park, Jin-Young;Kim, Hee-Cheul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.972-977
    • /
    • 2000
  • One of the major differences of Korean residential building compared with other countries is a rigid diaphragm of a floor due to the panel heating system. An increment of a gravity floor load might cause vibration problem when the composite floor system is introduced to the panel heating system. Since the noise criteria of a residential building is lower than that of an office building, the development of a noise absorbing system should be preceded. The response evaluation was performed for the finished floor, that is with panel heating and noise absorbing system. The natural frequency was obtained both from an experimental study and an analytical study. An appropriate vibration condition of a floor with panel heating and noise absorbing systems was evaluated from this study.

  • PDF

The Influence of the floor rigidity on front-loading washer installation and its vibrational behavior (설치면 강성에 따른 드럼세탁기의 동특성 및 설계대책)

  • Wee, Hoon;Cheong, J.D.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.248-251
    • /
    • 2004
  • The vibrational behavior of a front load washing machine is heavily influenced by the floor stiffness on which the washing machine is installed. In case the floor stiffness is extremely low like a wooden floor (we call it a 'soft floor, S/F'), it is quite probable that a washer's rigid body mode exists in the operating frequency range. In this case, the outer frame vibration level would be very high, but the mitigation scheme is quite limited except the excitation force abatement by acquisition of the optimal inertia in the internal vibratory system and the diaphragm's stiffness with the minimum force transfer.

  • PDF