• Title/Summary/Keyword: Floor Response Spectrum

Search Result 82, Processing Time 0.019 seconds

Evaluation of the Soil-structure Interaction Effect on Seismically Isolated Nuclear Power Plant Structures (지반-구조물 상호작용이 면진 원전구조물의 지진응답에 미치는 영향 평가)

  • Lee, Eun-haeng;Kim, Jae-min;Joo, Kwang-ho;Kim, Hyun-uk
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.379-389
    • /
    • 2016
  • This study intends to evaluate the conservativeness of the fixed-base analysis as compared to the soil-structure interaction (SSI) analysis for the seismically isolated model of a nuclear power plant in Korea. To that goal, the boundary reaction method (BRM), combining frequency-domain and time-domain analyses in a twofold process, is adopted for the SSI analysis considering the nonlinearity of the seismic base isolation. The program KIESSI-3D is used for computing the reaction forces in the frequency domain and the program MIDAS/Civil is applied for the nonlinear time-domain analysis. The BRM numerical model is verified by comparing the results of the frequency-domain analysis and time-domain analysis for the soil-structure system with an equivalent linear base isolation model. Moreover, the displacement response of the base isolation and the horizontal response at the top of the structure obtained by the nonlinear SSI analysis using BRM are compared with those obtained by the fixed-base analysis. The comparison reveals that the fixed-base analysis provides conservative peak deformation for the base isolation but is not particularly conservative in term of the floor response spectrum of the superstructure.

Assessment of Seismic Response Spatial Variation Through the Analysis of Earthquake Records at Hamaoka Nuclear Power Plant (하마오카 원자력 발전소 지진 기록 분석을 통한 지진응답의 공간적 변화 평가)

  • Ji, Hae Yeon;Ha, Jeong Gon;Kim, Min Kyu;Hahm, Dae Gi
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.5
    • /
    • pp.181-190
    • /
    • 2022
  • In assessing the seismic safety of nuclear power plants, it is essential to analyze the structures using the observed ground motion. In particular, spatial variation in which the characteristics of the ground motion record differ may occur if the location is different within the site and even if the same earthquake is experienced. This study analyzed the spatial variation characteristics of the ground motion observed at the structure and site using the earthquake records measured at the Hamaoka nuclear power plant. Even if they were located on the same floor within the same unit, there was a difference in response depending on the location. In addition, amplification was observed in Unit 5 compared to other units, which was due to the rock layer having a slower shear wave velocity than the surrounding bedrock. Significant differences were also found in the records of the structure's foundation and the free-field surface. Based on these results, the necessity of considering spatial variation in the observed records was suggested.

Comparison of Seismic Responses of Seismically Isolated NPP Containment Structures using Equivalent Linear- and Nonlinear-Lead-Rubber Bearing Modeling (등가선형 및 비선형 납-고무받침 모델을 이용한 면진된 원전구조물의 지진응답의 비교)

  • Lee, Jin Hi;Song, Jong-Keol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • In order to perform a soil-isolation-structure interaction analysis of seismically isolated nuclear power plant (NPP) structures, the nonlinear behavior of a seismic isolation system may be converted to an equivalent linear model used in frequency domain analysis. Seismic responses for seismically isolated NPP containment structures subjected to a simple artificial acceleration history and different site class earthquakes are evaluated for the equivalent-linear and nonlinear models that have been applied to lead-rubber bearing (LRB) modeling. It can be observed that the maximum displacements of the equivalent linear model are larger than that of the nonlinear model. From the floor response spectrum analysis for the top of NPP containment structures, it can be observed that the spectral acceleration of an equivalent linear model at about 0.5 Hz frequency is about 2~3 times larger than that of a nonlinear model.

A Study on the Methods of Enhancing the Seismic Performance for Reinforced Concrete School Buildings - Ordinary Moment Frame (철근콘크리트 보통모멘트 골조형식 학교건축물의 내전성능 향상 방안 연구)

  • Kim, Hyeon-Jin;Lee, Sang-Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.4
    • /
    • pp.74-81
    • /
    • 2009
  • In this study, the seismic performance of RC school buildings which were not designed according to earthquake-resistance design code were evaluated by using response spectrum and push-over analyses. The torsional amplification effect due to plan irregularity is considered and then the efficiency of seismic retrofitting methods such as RC shear wall, steel frame, RC frame and PC wing wall was investigated. The analysis result indicate that the inter-story drift concentrated in the first floor and most plastic hinge forms at the column of the first story. Among the retrofitting methods, the PC wing wall has the highest seismic performance in strength and story drift aspect. Especially, it can make building ductile behavior due to the concentrated inter-story drift at the first column hinge is distributed overall stories. The axial force, shear force and moment magnitude of existing elements significantly decreased after retrofitting. However, the axial and shear force of the elements connected to the additional retrofitting elements increased, and especially the boundary columns at the end of the retrofitting shear wall should be reinforced for assuring the enhancement of seismic performance.

Development of earthquake instrumentation for shutdown and restart criteria of the nuclear power plant using multivariable decision-making process

  • Hasan, Md M.;Mayaka, Joyce K.;Jung, Jae C.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.860-868
    • /
    • 2018
  • This article presents a new design of earthquake instrumentation that is suitable for quick decision-making after the seismic event at the nuclear power plant (NPP). The main objective of this work is to ensure more availability of the NPP by expediting walk-down period when the seismic wave is incident. In general, the decision-making to restart the NPP after the seismic event requires more than 1 month if an earthquake exceeds operating basis earthquake level. It affects to the plant availability significantly. Unnecessary shutdown can be skipped through quick assessments of operating basis earthquake, safe shutdown earthquake events, and damage status to structure, system, and components. Multidecision parameters such as cumulative absolute velocity, peak ground acceleration, Modified Mercalli Intensity Scale, floor response spectrum, and cumulative fatigue are discussed. The implementation scope on the field-programmable gate array platform of this work is limited to cumulative absolute velocity, peak ground acceleration, and Modified Mercalli Intensity. It can ensure better availability of the plant through integrated decision-making process by automatic assessment of NPP structure, system, and components.

Earthquake Responses of Nuclear Facilities Subjected to Non-vertically Incidental and Incoherent Seismic Waves (비수직 입사 비상관 지진파에 의한 원전 시설물의 지진 응답)

  • Lee, Jin Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.6
    • /
    • pp.237-246
    • /
    • 2022
  • Based on the random-vibration-theory methodology, dynamic responses of nuclear facilities subjected to obliquely incidental and incoherent earthquake ground motions are calculated. The spectral power density functions of the 6-degree-of-freedom motions of a rigid foundation due to the incoherent ground motions are obtained with the local wave scattering and wave passage effects taken into consideration. The spectral power density function for the pseudo-acceleration of equipment installed on a structural floor is derived. The spectral acceleration of the equipment or the in-structure response spectrum is then estimated using the peak factors of random vibration. The approach is applied to nuclear power plant structures installed on half-spaces, and the reduction of high-frequency earthquake responses due to obliquely incident incoherent earthquake ground motions is examined. The influences of local wave scattering and wave passage effects are investigated for three half-spaces with different shear-wave velocities. When the shear-wave velocity is sufficiently large like hard rock, the local wave scattering significantly affects the reduction of the earthquake responses. In the cases of rock or soft rock, the earthquake responses of structures are further affected by the incident angles of seismic waves or the wave passage effects.

Regional Seismic Risk Assessment for Structural Damage to Buildings in Korea (국내 건축물 지진피해 위험도의 지역단위 평가)

  • Ahn, Sook-Jin;Park, Ji-Hun;Kim, Hye-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.6
    • /
    • pp.265-273
    • /
    • 2023
  • This study proposes a methodology for the regional seismic risk assessment of structural damage to buildings in Korea based on evaluating individual buildings, considering inconsistency between the administrative district border and grid lines to define seismic hazard. The accuracy of seismic hazards was enhanced by subdividing the current 2km-sized grids into ones with a smaller size. Considering the enhancement of the Korean seismic design code in 2005, existing seismic fragility functions for seismically designed buildings are revised by modifying the capacity spectrum according to the changes in seismic design load. A seismic risk index in building damage is defined using the total damaged floor area considering building size differences. The proposed seismic risk index was calculated for buildings in 29 administrative districts in 'A' city in Korea to validate the proposed assessment algorithm and risk index. In the validation procedure, sensitivity analysis was performed on the grid size, quantitative building damage measure, and seismic fragility function update.

Effects of Significant Duration of Ground Motions on Seismic Responses of Base-Isolated Nuclear Power Plants (지진의 지속시간이 면진원전의 지진거동에 미치는 영향)

  • Nguyen, Duy-Duan;Thusa, Bidhek;Lee, Tae-Hyung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.149-157
    • /
    • 2019
  • The purpose of this study is to investigate the effects of the significant duration of ground motions on responses of base-isolated nuclear power plants (NPPs). Two sets of ground motion records with short duration (SD) and long duration (LD) motions, scaled to match the target response spectrum, are used to perform time-history analyses. The reactor containment building in the Advanced Power Reactor 1400 (APR1400) NPP is numerically modeled using lumped-mass stick elements in SAP2000. Seismic responses of the base-isolated NPP are monitored in forms of lateral displacements, shear forces, floor response spectra of the containment building, and hysteretic energy of the lead rubber bearing (LRB). Fragility curves for different limit states, which are defined based on the shear deformation of the base isolator, are developed. The numerical results reveal that the average seismic responses of base-isolated NPP under SD and LD motion sets were shown to be mostly identical. For PGA larger than 0.4g, the mean deformation of LRB for LD motions was bigger than that for SD ones due to a higher hysteretic energy of LRB produced in LD shakings. Under LD motions, median parameters of fragility functions for three limit states were reduced by 12% to 15% compared to that due to SD motions. This clearly indicates that it is important to select ground motions with both SD and LD proportionally in the seismic evaluation of NPP structures.

Seismic isolation of nuclear power plant based on layered periodic foundation

  • Mi Zhao;Qun Chen;Junqi Zhang;Xiuli Du
    • Earthquakes and Structures
    • /
    • v.24 no.4
    • /
    • pp.259-274
    • /
    • 2023
  • In this paper, mechanical properties of periodic foundation made of concrete and rubber are investigated by a parametric study using the finite element method (FEM). Periodic foundation is a special type of seismic isolation foundation used in civil engineering, which is inspired by the meso-scale structure of phononic crystals in solid-state physics. This type of foundation is capable of reducing the seismic wave propagating though the foundation, therefore providing additional protection for the structures. In the FEM analysis, layered periodic foundation is frequently modelled due to its simplicity in numerical modeling. However, the isolation effect of periodic foundation on nuclear power plant has not been fully discussed to the best knowledge of authors. In this work, we construct four numerical models of nuclear power plant with different foundations to investigate the seismic isolation effects of periodic foundations. The results show that the layered periodic foundation can increase the natural period of the nuclear power plant like traditional base isolation systems, which is beneficial to the structures. In addition, the seismic response of the nuclear power plant can also be effectively reduced in both vertical and horizontal directions when the frequencies of the incident waves fall into some specific frequency bandgaps of the periodic foundation. Furthermore, it is demonstrated that the layered periodic foundation can reduce the amplitude of the floor response spectrum, which plays an important role in the protection of the equipment.

Seismic deformation demands on rectangular structural walls in frame-wall systems

  • Kazaz, Ilker
    • Earthquakes and Structures
    • /
    • v.10 no.2
    • /
    • pp.329-350
    • /
    • 2016
  • A parametric study was conducted to investigate the seismic deformation demands in terms of drift ratio, plastic base rotation and compression strain on rectangular wall members in frame-wall systems. The wall index defined as ratio of total wall area to the floor plan area was kept as variable in frame-wall models and its relation with the seismic demand at the base of the wall was investigated. The wall indexes of analyzed models are in the range of 0.2-2%. 4, 8 and 12-story frame-wall models were created. The seismic behavior of frame-wall models were calculated using nonlinear time-history analysis and design spectrum matched ground motion set. Analyses results revealed that the increased wall index led to significant reduction in the top and inter-story displacement demands especially for 4-story models. The calculated average inter-story drift decreased from 1.5% to 0.5% for 4-story models. The average drift ratio in 8- and 12-story models has changed from approximately 1.5% to 0.75%. As the wall index increases, the dispersion in the calculated drifts due to ground motion variability decreased considerably. This is mainly due to increase in the lateral stiffness of models that leads their fundamental period of vibration to fall into zone of the response spectra that has smaller dispersion for scaled ground motion data set. When walls were assessed according to plastic rotation limits defined in ASCE/SEI 41, it was seen that the walls in frame-wall systems with low wall index in the range of 0.2-0.6% could seldom survive the design earthquake without major damage. Concrete compressive strains calculated in all frame-wall structures were much higher than the limit allowed for design, ${\varepsilon}_c$=0.0035, so confinement is required at the boundaries. For rectangular walls above the wall index value of 1.0% nearly all walls assure at least life safety (LS) performance criteria. It is proposed that in the design of dual systems where frames and walls are connected by link and transverse beams, the minimum value of wall index should be greater than 0.6%, in order to prevent excessive damage to wall members.