• Title/Summary/Keyword: Floor Plate

Search Result 246, Processing Time 0.028 seconds

Investigation of the link beam length of a coupled steel plate shear wall

  • Gholhaki, M.;Ghadaksaz, M.B.
    • Steel and Composite Structures
    • /
    • v.20 no.1
    • /
    • pp.107-125
    • /
    • 2016
  • Steel shear wall system has been used in recent years in tall buildings due to its appropriate behavior advantages such as stiffness, high strength, economic feasibility and high energy absorption capability. Coupled steel plate shear walls consist of two steel shear walls that are connected to each other by steel link beam at each floor level. In this article the frames of 3, 10, and 15 of (C-SPSW) floor with rigid connection were considered in three different lengths of 1.25, 2.5 and 3.75 meters and link beams with plastic section modulus of 100% to the panel beam at each floor level and analyzed using three pairs of accelerograms based on nonlinear dynamic analysis through ABAQUS software and then the performance of walls and link beams at base shear, drift, the period of structure, degree of coupling (DC) and dissipated energy evaluated. The results show that the (C-SPSW) system base shear increases with a decrease in the link beam length, and the drift, main period and dissipated energy of structure decreases. Also the link beam length has different effects on parameters of coupling degrees.

Effect on the Center of Pressure of Vision, Floor Condition, and the Height of Center of Mass During Quiet Standing

  • Kim, Seung-su;Lim, Kitaek;Choi, Woochol Joseph
    • Physical Therapy Korea
    • /
    • v.28 no.2
    • /
    • pp.154-160
    • /
    • 2021
  • Background: Theoretically, balance is affected by the height of center of mass (COM) during quiet standing. However, no one examined this in humans with variables derived from the center of pressure (COP). Objects: We have conducted balance experiment to measure COP data during quiet standing, in order to examine how the COP measures were affected by the height of COM, vision, floor conditions, and gender. Methods: Twenty individuals stood still with feet together and arms at sides for 30 seconds on a force plate. Trials were acquired with three COM heights: 1% increased or decreased, and not changed, with two vision conditions: eyes closed (EC) and eyes open (EO), and with two floor conditions: unstable (foam pad) and stable (force plate) floor. Outcome variables included the mean distance, root mean square distance, total excursion, mean velocity, and 95% confidence circle area. Results: All outcome variables were associated with the COM height (p < 0.0005), vision (p < 0.0005), and floor condition (p < 0.003). The mean velocity and 95% confidence circle area were 5.7% and 21.8% greater, respectively, in raised COM than in lowered COM (24.6 versus 23.2 mm/s; 1,013.4 versus 832.3 mm2). However, there were no interactions between the COM height and vision condition (p > 0.096), and between the COM height and floor condition (p > 0.183) for all outcome variables. Furthermore, there was no gender difference in all outcome variables (p > 0.186). Conclusion: Balance was affected by the change of COM height induced by a weight belt in human. However, the effect was not affected by vision or floor condition. Our results should inform the design of balance exercise program to improve the outcome of the balance training.

Properties of Thermal Conductivity of Cement Mortar for Apartment Housing Floor Using Combined Strengthening Method (공동주택 바닥용 시멘트 모르타르의 복합강화법 변화에 따른 열전도 특성)

  • 윤길봉;전충근;정성철;윤기원;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.243-248
    • /
    • 2001
  • The objective of this study is to investigate the thermal conductivity of cement mortar for apartment housing floor using expansive admixture, copper fiber, cower lathe, hollowed aluminum plate. According to test results, temperature at point (a) located above heating pipe does not show significant variation with age, and temperature at (b), which is located at the finishing surface above heating pipe, and temperature at (c), which is located at center surface between heating pipe has remarkable change. Temperature distribution sat (b) are in order for, structure containing copper fiber>plain structure>structure containing hollowed aluminum plate>structure containing expansive admixture. Temperature distribution, shows high tendency in order for, structure containing copper fiber>structure containing copper lathe>structure containing hollowed aluminum plate>plain structure>structure containing expansive admixture. (a) estimation of temperature distribution is determined with the variation of temperature between (b) point and (c) point during 60 minutes heating.

  • PDF

A Study on Determination of Damping Layer Thickness to Reduce Heavy Impact Noise in Apartment Building Floors (공동주택 층간 중량충격소음의 효율적 저감을 위한 바닥구조 감쇠층 두께 선정에 관한 연구)

  • Shin, Yun-Ho;Kim, Kwang-Joon;Kim, Min-Bae;Nam, Dae-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.936-941
    • /
    • 2005
  • Apartment building floor with a damping layer can be modeled as a sandwich plate. In order to reduce low frequency noise more efficiently due to heavy impact on such a floor, thickness of the damping layer needs to be optimized at the design stage. Modal loss factors are determined in this paper by RKU equation which is popular In sandwich plate theories. Optimum damping layer thickness determined at each mode is weighted so that several modes in the frequency range of interest can be included in a more systematic way. Furthermore, to reflect frequency-dependent characteristics of complex stiffness of the damping layer, an iteration method is proposed in finding modal frequencies.

  • PDF

Experimental and numerical study on the PSSDB system as two-way floor units

  • Al-Shaikhli, Marwan S.;Badaruzzaman, Wan Hamidon Wan;Al Zand, Ahmed W.
    • Steel and Composite Structures
    • /
    • v.42 no.1
    • /
    • pp.33-48
    • /
    • 2022
  • This paper researches a lightweight composite structure referred to as the Profiled Steel Sheeting Dry Board (PSSDB). It is fundamentally produced by connecting a Profiled Steel Sheeting to Dry Board using mechanical screws. It is mainly employed as floor panels. However, almost all studies have focused on researching the one-way structural performance. Therefore, this study focuses on the bending behaviour of the two-way PSSDB floor system using both of Finite Element (FE) and Experimental analysis. Four panels were used in the experimental tests, and a mild steel plate has been applied at the bottom for two panels. For the FE process, models were created using ABAQUS software. 4 parametric studies have been utilized to understand the system's influential elements. From the experimental tests, it was found that using Steel Plate shall optimize the two-way action of the system and depending on the type of dry board the improvement in stiffness may reach up to 38%. It was shown from the FE analysis that the dry board, profiled steel sheeting and steel plat can affect the system by up to 10 %, 17% and 3% respectively, while applying a uniform load demonstrate a better two-way action.

A simplified method for determining the acceleration amplitudes of long-span floor system under walking/running loads

  • Cao, Liang;Chen, Y. Frank
    • Structural Engineering and Mechanics
    • /
    • v.75 no.3
    • /
    • pp.377-387
    • /
    • 2020
  • Modern long-span floor system typically possesses low damping and low natural frequency, presenting a potential vibration sensitivity problem induced by human activities. Field test and numerical analysis methods are available to study this kind of problems, but would be inconvenient for design engineers. This paper proposes a simplified method to determine the acceleration amplitudes of long-span floor system subjected to walking or running load, which can be carried out manually. To theoretically analyze the acceleration response, the floor system is simplified as an anisotropic rectangular plate and the mode decomposition method is used. To facilitate the calculation of acceleration amplitude aP, a coefficient αwmn or αRmn is introduced, with the former depending on the geometry and support condition of floor system and the latter on the contact duration tR and natural frequency. The proposed simplified method is easy for practical use and gives safe structural designs.

Reduction of noise and vibration of cabin by using the floating floor (뜬바닥 구조를 이용한 격실의 소음 및 진동저감)

  • 김현실;김봉기;차선일;김영수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.300-303
    • /
    • 2004
  • In this paper, floor impact noise reduction in a cruise ship cabin by using floating floor is studied. A mock-up is built by using 61 steel plate, and two identical cabins are made where 25t panel is used to construct wall and ceiling inside the steel structure. Various floating floor systems are tested for which normalized impact noise is measured according to ISO 140-7 It is shown that effect of VL(Visco-elastic Layer) is negligible when it is used between deck and mineral wool, since most vibration absorption occurs in the wool. In addition, direction of the mineral wool fiber affects impact noise significantly.

  • PDF

Deformation of the floor structure of railway vehicle depending on temperature and humidity (온습도 변화에 따른 철도차량 바닥재의 변형)

  • Shin, Bum-Sik;Kim, Myong-Soo;Choi, Yeon-Sun
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1002-1007
    • /
    • 2008
  • The floor structure of railway vehicle can deflect and warp due to variation of temperature and humidity at the inside and outside of vehicle. In this study, its temperature and humidity characteristics was investigated experimentally for beam and plate specimen and numerically for the floor structure assembly. The temperature and humidity characteristics of a part were measured and the deformation and stress distribution of the floor structure were calculated using a commercial software. And the warp deformation of the plywood was measured experimentally. The results show that the temperature and humidity effects on the floor structure are the important factor to decide the strength and the quality of the floor structure of railway vehicles.

  • PDF

Lithospheric Plate Motion Model: Development and Current Status (지각판 운동 모델의 변천과 현황)

  • Sung-Ho Na;Jungho Cho
    • Journal of the Korean earth science society
    • /
    • v.43 no.6
    • /
    • pp.661-679
    • /
    • 2022
  • Plate tectonics, with the continental drift theory and later strongly supported by the sea-floor spreading theory with evidence of paleo-geomagnetic fields, ocean floor sediments, successfully explained the slow but continuous movements of rigid lithospheres in geological time. Initially, plate motions were described as relative movements between adjacent plates, mainly based on paleo-geomagnetic reversal data. The advent of space geodetic techniques in the 1980s enabled direct measurements of plate velocities and assessment of deformations within certain regions. In this review, early relative plate motion models are briefly summarized, the no-net-rotation frame theory and corresponding models are explained, and the characteristics of the most recent models that incorporate intraplate deformation are described. Additionally, the plate motion section of the International Terrestrial Reference Frame is introduced, and a few recent case studies of local plate motion are briefly described; for example, in South America, Europe, Antarctica, and Turkey. Finally, studies of plate motion in northeastern Asia focusing on the Korean Peninsula are introduced.