• Title/Summary/Keyword: Floor Panel

Search Result 177, Processing Time 0.03 seconds

Association between Environmental Factors in Home and Behavioral Problems in Children with Allergic Diseases: Based on 2015 Panel Study of Korean Children Survey (알레르기질환 아동의 가정 내 환경요인과 문제행동의 관계: 2015년 한국아동패널 자료를 바탕으로)

  • Son, Miseon;Ji, Eunsun
    • Research in Community and Public Health Nursing
    • /
    • v.30 no.4
    • /
    • pp.426-436
    • /
    • 2019
  • Purpose: This study aimed to investigate the association between indoor environmental exposures and behavioral problems in children with allergic diseases. Methods: We used data from 2015 Panel Study of Korean Children (PSKC). The subjects of this study included 825 children aged 7 years with asthma, allergic rhinitis, or atopic dermatitis. The data was analyzed using hierarchical multiple regression. Results: Factors influencing behavioral problems in children with allergic diseases were passive smoking (β=.15, p<.001), painting from 1year after birth until 1 year ago (β=.13, p<.001), using of linoleum as floor materials (β=.09, p<.001), change of wallpaper From 2 years before pregnancy until 1year after birth (β=.08, p<.001), change of wallpaper from 1year after birth until 1 year ago (β=.07, p<.001), keeping hot food or water in plastic container (β=.06, p<.001), remodeling from 1 year after birth until 1year ago (β=.04, p<.001), using of plastic container (β=.03, p<.001), and change of floor materials from 1 year after birth until 1year ago (β=.01, p=.006) which explained about 10% of behavioral problems. Conclusion: This study showed that indoor environmental exposures were associated with behavioral problems in children with allergic diseases. Based on the findings of this study, programs focusing on controlling of indoor environmental exposures may help to prevent and reduce behavioral problems in children with allergic diseases.

Sound-Insulation Design of Aluminum Extruded Panel in Next-Generation High-Speed Train (차세대 고속철도 차량용 알루미늄 압출재의 차음 설계)

  • Kim, Seock-Hyun;Seo, Tae-Gun;Kim, Jeong-Tae;Song, Dal-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.5
    • /
    • pp.567-574
    • /
    • 2011
  • Aluminum extruded panels are widely used instead of corrugated steel panels for weight reduction in high-speed trains. Of the layers in the train body, it makes the largest contribution to the sound insulation. However, compared with that of a flat panel with the same weight, the TL of the aluminum extruded panel is remarkably lower in the local resonance frequency band. We study aluminum extruded panels for next-generation 400-km/h trains. We investigate the problem of sound insulation and propose a practical method to improve the sound-insulation performance. The local resonance frequency region is increased by a modification of the core structure, and urethane foam is placed in the core. The effect on the sound insulation is verified by experiments. Finally, the improvement for the entire sound-transmission loss is estimated for the layered floor panels of express trains.

Seismic analysis of CFST frames considering the effect of the floor slab

  • Huang, Yuan;Yi, Weijian;Nie, Jianguo
    • Steel and Composite Structures
    • /
    • v.13 no.4
    • /
    • pp.397-408
    • /
    • 2012
  • This paper describes the refined 3-D finite element (FE) modeling of composite frames composed of concrete-filled steel tubular (CFST) columns and steel-concrete composite beams based on the test to get a better understanding of the seismic behavior of the steel-concrete composite frames. A number of material nonlinearities and contact nonlinearities, as well as geometry nonlinearities, were taken into account. The elastoplastic behavior, as well as fracture and post-fracture behavior, of the FE models were in good agreement with those of the specimens. Besides, the beam and panel zone deformation of the analysis models fitted well with the corresponding deformation of the specimens. Parametric studies were conducted based on the refined finite elememt (FE) model. The analyzed parameters include slab width, slab thickness, shear connection degree and axial force ratio. The influences of these parameters, together with the presence of transverse beam, on the seismic behavior of the composite frame were studied. And some advices for the corresponding seismic design provisions of composite structures were proposed.

A Study on the Control Method of Hand & Automatic Operation of On-Off Wiring of an Easy Elevator (간이 엘리베이터 수.자동 개폐배선 제어방식에 관한연구)

  • Wee, Sung-Dong;Gu, Hal-Bon;Kim, Tae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.1107-1112
    • /
    • 2002
  • An easy elevator originated is an opened system to compare an existing equipment, and learning efficient is high as a wiring that the sequence control circuit is on and off. The structure of an equipment to be controled from the first floor to the fifth floor is constructed by a lamp to express the function of the open-close of the door according to the cage moving, to express the mechanical actuation of the forward-reverse break and motor of load and of hand-worked control component of Push-Button S/W, L/S and Relay. In order to act of the elevator function that these components connected, designed the auto program and the sequence control circuit. Consequently the process that these(1~5steps) operated the cage with an auto program of the elevator and the sequence control circuit is controled by the step of forward and reverse that the L/S1~L/S5 of sensor adjust function let posit, by the adjustable S/W1~S/W5 of PLC testing panel and the S/W1~S/W5 which installed on the transparent acryl plate of a frame. In here, improved apparatus is the learning equipment of combined use to study the principle and the technique of the originated sequence control circuit and the auto program of PLC.

  • PDF

Prediction of Heavy-Weight Floor Impact Sound in Multi-unit House using Finite Element Analysis (유한요소해석을 이용한 공동주택의 중량충격음 예측)

  • Mun, Dae-Ho;Lee, Sang-Hyun;Hwang, Jae-Seung;Baek, Gil-Ok;Park, Hong-Gun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.6
    • /
    • pp.645-657
    • /
    • 2015
  • In this study floor impact noise and structure acceleration response of bare concrete slabs were predicted by using Finite Element Analysis(FEA). Prediction results were compared with experimental results to prove the accuracy of numerical model. Acoustic absorption were addressed by using panel impedance coefficients with frequency characteristics and structural modal damping of numerical model were applied by modal testing results and analysis of prediction and test results. By using frequency response function, the floor acceleration and acoustic pressure responses for various impact sources were calculated at the same time. In the FEA, the natural frequencies and the shapes of vibration and acoustic modes can be estimated through the eigen-value analysis, and it can be visually seen the vibration and sound pressure field and the contribution of major modes.

An Inter-floor Noise Prevention System using an Open-source Controller (오픈소스 컨트롤러를 사용한 층간 소음 방지 시스템)

  • Kim, Tae-Hoon;Jang, Hyuk-Jae;Lee, Won-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.5
    • /
    • pp.899-906
    • /
    • 2017
  • This paper proposes an inter-floor noise prevention system using an open-source controller. In the proposed system, Arduino which is a widely used open source controller analyzes sound signals and vibration signals with fast fourier transform. When the magnitude of the band-passed signal excesses the noise reference considering transmission loss of a panel or a wall, the system displays warning messages on an LCD module and a mobile device for users to be aware of the noise condition. In the experiment, the system has succeeded extracting and processing the band-passed signals between 130 Hz ~ 1040 Hz. When the magnitude of the extracted signal that is subtracted from the transmission loss exceeds 45 dB, the system has displayed the warning message on an LCD module and a mobile devicefor noise reduction.

Analysis of the Working Conditions of Screen Fire Shutters in the Goyang Bus Terminal Fire (고양종합터미널화재 시 스크린방화셔터의 작동실태 분석)

  • Lee, Eui-Pyeong
    • Fire Science and Engineering
    • /
    • v.32 no.2
    • /
    • pp.82-91
    • /
    • 2018
  • This study analyzed the working conditions and problems of screen fire shutters in the Goyang Bus Terminal fire based on the fire investigation results. At that time, screen fire shutters in the 1st basement, which was under construction, did not work because the power was shut off. Four screen fire shutters in the 1st and 3rd floor did not work despite the power not being shut off. The following problems related to a screen fire shutter were found: shutting off the power to screen fire shutters for the fire compartment on each floor, even when the fire compartments were changed in each area; installing an integral type screen fire shutter without any regulations, installing a two-stage screen fire shutter in a place not related to obstacles during evacuation; stopping the function of the screen fire shutters for a fire compartment on each floor after a combustible sandwich panel was comparted; installing a screen fire shutter over 10 meters in width, in which its performance was not verified; and no safety control standards for reinstalling or maintaining a screen fire shutter.

TRANSFER ORBIT THERMAL ANALYSIS FOR COMS (통신해양기상위성의 전이궤도 열해석)

  • Jun, Hyoung-Yoll;Kim, Jung-Hoon;Kim, Sung-Hoon;Yang, Koon-Ho
    • Journal of computational fluids engineering
    • /
    • v.13 no.2
    • /
    • pp.48-54
    • /
    • 2008
  • COMS (Communication, Ocean and Meteorological Satellite) is a geostationary satellite and has been developing by KARI for communication, ocean and meteorological observations. It will be launched by ARIANE 5. Ka-band components are installed on South panel, where single solar array wing is mounted. Radiators, embedded heat pipes, external heat pipe, insulation blankets and heaters are utilized for the thermal control of the satellite. The Ka-band payload section is divided several areas based on unit operating temperature in order to optimize radiator area and maximize heat rejection capability. Other equipment for sensors and bus are installed on North panel. The ocean and meteorological sensors are installed on optical benches on the top floor to decouple thermally from the satellite. During the transfer orbit operation, satellite will be under severe thermal environments due to low dissipation of components, satellite attitudes and LAE(Liquid Apogee Engine) firing. This paper presents temperature and heater power prediction and validation of thermal control design during transfer orbit operation.

Development of analytical modeling for an energy-dissipating cladding panel

  • Maneetes, H.;Memari, A.M.
    • Structural Engineering and Mechanics
    • /
    • v.32 no.5
    • /
    • pp.587-608
    • /
    • 2009
  • Modern earthquake-resistant design aims to isolate architectural precast concrete panels from the structural system so as to reduce the interaction with the supporting structure and hence minimize damage. The present study seeks to maximize the cladding-structure interaction by developing an energy-dissipating cladding system (EDCS) that is capable of functioning both as a structural brace, as well as a source of energy dissipation. The EDCS is designed to provide added stiffness and damping to buildings with steel moment resisting frames with the goal of favorably modifying the building response to earthquake-induced forces without demanding any inelastic action and ductility from the basic lateral force resisting system. Because many modern building facades typically have continuous and large openings on top of the precast cladding panels at each floor level for window system, the present study focuses on spandrel type precast concrete cladding panel. The preliminary design of the EDCS was based on existing guidelines and research data on architectural precast concrete cladding and supplemental energy dissipation devices. For the component-level study, the preliminary design was validated and further refined based on the results of nonlinear finite element analyses. The stiffness and strength characteristics of the EDCS were established from a series of nonlinear finite element analyses and are discussed in detail in this paper.

Numerical Analysis of Transmission Loss Prediction in High Speed Trains (전산해석을 이용한 동력 분산형 고속철도차량의 투과손실 예측)

  • Kim, Tae-Min;Kim, Jeung-Tae;Kim, Jung-Soo;Kim, Soo-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.8
    • /
    • pp.703-709
    • /
    • 2010
  • An analysis tool for predicting transmission loss in high speed trains based on combined use of the statistical energy analysis and the finite element methods has been proposed. The analysis utilizes a commercially available numerical solver VA ONE with imbedded NASTRAN module. The proposed analysis tool is first verified by comparing numerically predicted transmission loss of a light rail transport(LRT) structure with experimental results. The comparison shows that the numerically predicted transmission loss is similar to the experimental data. The analysis tool is then applied to the prediction of transmission loss in the high speed train(HST) currently under development. Various sub-structures such as the floor, side panel and ceiling have been numerically analyzed to predict their transmission losses. The results obtained here can be used as input data for predicting the interior noise level of the HST at design stage.