• Title/Summary/Keyword: Floodplain Analysis

Search Result 91, Processing Time 0.024 seconds

Study on Damage Reduction by Flood Inundation and the Sediments by SWAT and HEC-RAS Modeling of Flow Dynamics with Watershed Hydrology - For 27 July 2011 Heavy Storm Event at GonjiamCheon Watershed - (SWAT 및 HEC-RAS 모형의 수문-수리 연계모델링을 통한 곤지암천 유역의 하천범람 및 토사유출 피해저감 연구 - 2011년 7월 27일 국지성 폭우를 대상으로 -)

  • Jung, Chung-Gil;Joh, Hyung-Kyung;Yu, Yeong-Seok;Park, Jong-Yoon;Kim, Seong-Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.2
    • /
    • pp.87-94
    • /
    • 2012
  • This study is to evaluate flood inundation and to recommend measures of damage reduction on sediment by concentrated torrential rainfall at Gonjiamcheon Watershed (183.4 $km^2$). Firstly, the SWAT (Soil and Water Assessment Tool) was simulated streamflow and sediment at upstream. Then, we produced a map of floodplain boundary by using HEC-RAS (Hydrologic Engineering Centers River Analysis System) at downstream. The SWAT model was calibrated with 2 years (2008~2009) daily streamflow and validated for another years (2010~2011. 7. 31). The SWAT model was simulated with 3 years (2008~2010) by monthly water quality (Sediment) at Gonjiamcheon water quality station. The streamflow and sediment from SWAT model were input as boundary conditions to HEC-RAS. The results of HEC-RAS indicated that mapping of floodplain boundary was Jiwol and Jiwol 2 district. Additionally, inundation area and depth were assessed and applied BMPs scenario for managing the sediment yield.

A Study on the Distribution Patterns of Salix gracilistyla and Phragmites japonica Communities according to Micro-landforms and Substrates of the Stream Corridor (하천 미지형 및 하상저질에 따른 갯버들과 달뿌리풀군락의 분포특성에 관한 연구)

  • 전승훈;현진이;최정권
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.27 no.2
    • /
    • pp.58-68
    • /
    • 1999
  • This study was carried out to verify the distribution patterns of Salix gracilistyla and Phragmites japonica communities known as obligatory riparian species according to physical factors such as micro-landforms, substrates, etc., at Soo-ip stream corridor. Firstly four vegetation types - Salix gracilistyla dominant type, Phragmites japonica dominant type, mixed type of two species, and mixed type of two species to other species, were classified by cluster analysis based on UPGMA-Euclidean distance. Also these vegetation types showed many different distribution patterns in response to the longitudinal and lateral view along the stream corridor and substrate composition. Salix gracilistyla was major component of dominant vegetation types developed at attack point of bending reach and on substrates composed of rock fragments, but contrastly Phragmites japonica was most important component of dominant vegetation types at point bar of bending reach and floodplain, and on substrates composed of soil materials. Secondly the species and environment biplot form CCA strongly supported the vegetation types divided by classification. Namely Salix gracilistyla was closely correlated with rock fragments and steep slope, which is resistant to physical action even though located near running water. But Phragmites japonica showed a high correlation with soil particles sedimented at floodplain by divergent flow.

  • PDF

A Study on the Holocene Environments of the Jemin Plain in Gongju, Chungnam Province (충남 공주 제민평야의 홀로세 환경연구)

  • PARK, Ji Hoon;LEE, Ae-Jin
    • Journal of The Geomorphological Association of Korea
    • /
    • v.24 no.2
    • /
    • pp.65-78
    • /
    • 2017
  • In this study, stable carbon isotopic analysis (22 specimens) and magnetic susceptibility analysis (23 specimens) were conducted out on the specimens collected from two points (trench DT1, DT2) in the floodplain of Jemincheon(hereinafter the Jemin plain) to reconstruct the Holocene Environments (Period I, Period II, Period III) of the Jemin plain in Gongju, Chungnam. The results were as follows: In Period I (approximately 7,480~4,940 yrs B.P.) and especially around 7,480~7,320 yrs B.P., it was cool-dry and there were two minor climate fluctuations. This period received a continuous flow of sediments, rather than massive amounts of sediments due to abrupt flooding, and therefore, there was almost no soilization process. Period II(approximately 4,940~2,600 yrs B.P.) was also relatively cool-dry. However, in Period II b, unlike I, the minor climate fluctuations were less pronounced. In this period, flooding and desiccation repeated, inducing soilization processes especially around 3,160 yrs B.P. In Stage III (~360 yrs B.P.), it was warm and humid compared to II b. However, in III a, there was no inflow of sediments due to irregular flooding, and in fact, soilization process was more manifested than during II b due to the impact of the desiccation environment. However, there were some mass movements from Bonghwang Mt. (a.s.l. 147m) caused by heavy rains and typhoon during III b (approximately 360 yrs B.P.), thus moving a large amount of debris (i.e. gravel), which resulted in sedimentation.

An Investigation of Vascular Plant Life Forms in the Amsa-dong Ecological and Landscape Conservation Area - A Floodplain along the Han River in Seoul, South Korea - (한강 범람원인 암사동 생태·경관보전지역의 식물생활형 특성 연구)

  • Yun, daum;Oh, Choong-Hyeon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.26 no.6
    • /
    • pp.1-19
    • /
    • 2023
  • This study aimed to identify the characteristics of the plant growth forms within the Amsa-dong Ecological and Landscape Conservation Area, a floodplain along the Han River, based on 20 years of flora monitoring data. The analysis revealed that there were 106 taxa identified in 2003, 158 taxa in 2006, 107 taxa in 2013, and 202 taxa in 2020. Compared to 2003 and 2013, the number of taxa increased significantly by approximately 50 taxa in 2006 and around 100 taxa in 2020. It is presumed that this is due to the influx of seeds caused by the flooding of the Han River due to record-breaking heavy rains during the rainy seasons of 2006 and 2020, leading to a rapid increase in the number of taxa. This was also confirmed in aquatic plants(HH) as a result of comparison of life style analysis by year. The analysis revealed that there were 19 aquatic plant(HH) in 2003, 32 aquatic plant(HH) in 2006, 9 aquatic plant(HH) in 2013, and 30 aquatic plant(HH) in 2020. The number of aquatic plants(HH) increased slightly in 2006 and 2020 compared to 2003 and 2013, and the influx of rare aquatic plants in urban rivers was confirmed. Consistent with the results of the vascular flora analysis above, these plants are believed to have been introduced from the upper reaches of the Han River when the Han River flooded due to heavy rains during the record-breaking rainy season in 2006 and 2020.

Economic Analysis of Floodplain Forecast using GIS and MD-FDA (GIS와 MD-FDA를 연계한 예상침수지역의 경제성 분석)

  • Choi, Hyun;Ahn, Chang-Hwan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.6_2
    • /
    • pp.599-611
    • /
    • 2007
  • Among natural disasters that lead to devastating damage, floods from heavy rains have been causing hundreds of victims and a great loss of their properties every year. Basically, there is no other way to deal with the problem considering the characteristics of natural disaster, but more specific studies for a preventive measure of flood has been in progress so far. However, the controversy over the problem is going on due to the objection of some environmental organizations or some economic reasons. The key point is to select the most likely area for a preventive measure of floods where a huge amount of the national budget is put into it. This is the factor which judges whether it would be a success or failure. This study aims to provide some basic data for deciding the priority order in a disaster preventing plan by drawing more potential damage areas from the connection with GIS and using them into the economic analysis for flood prevention industries.

Environmental Characteristics and Nature-friendly Planning Strategies for an Urban Stream - The Case of Chuncheon's Gongji Stream - (도시하천의 환경특성과 친자연적 계획전략 - 춘천시 공지천을 대상으로 -)

  • Jo Hyun-Kil;Ahn Tae-Won
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.34 no.3 s.116
    • /
    • pp.1-11
    • /
    • 2006
  • This study analyzed characteristics of natural and human environments in Chuncheon's Gongji stream, and suggested nature-friendly planning strategies for self-purification of water quality, biodiversity improvement and conservative waterfront recreation. The environmental analysis included streambed structures, floodplain soils, water quality, vegetation, wildlife, and human facilities. Natural colonization of vegetation for the middle section of the study stream was obstructed by a straightened concrete revetment of baseflow channel, and vehicle movement and concrete parking lots across the floodplain. These human disturbances also deteriorated the naturalness of the stream landscape and limited habitation of bird species. However, natural sedimented wetlands in half of the channel width for the lower section of the stream contributed to a desirable vegetational landscape and greater bird occurrence. Based on BOD measurements, water quality of the stream fell under class $II{\sim}III$ of the stream water-quality standard, but it was worse around sewage outlets due to incomplete sewage collection especially during the dry season. Dominant fish species included typical inhabitants of good water-quality streams that are tolerant of adverse habitat changes. Nature-friendly planning strategies were established based on analysis of the environmental characteristics. They focused on not merely spatial zoning and layout divided into four zones - preservation, partial preservation, conservation and use -, but close-to-nature channel revetment techniques, natural water-purification facilities, biotope diversification, and water-friendly recreation and circulation. Strategies pursued both renewal of stream naturalness and hydraulic stability of streamflow by minimizing transformation of natural channel micro-topography and biotope, and by reflecting natural traces of streambed structures such as revetment scour and sedimentation.

A Study on Clogging and Water Quality Improvement in Floodplain Filtration with Flood/rest Raw-water Supply (범람/휴지식 홍수터여과에서 폐색현상 및 수질개선도 연구)

  • Kim, Hoh-Seok;Kim, Seung-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.2
    • /
    • pp.120-131
    • /
    • 2011
  • A pilot-scale experiment of floodplain filtration with a filtration depth of 3.6m was performed employing flood/rest type raw-water supply system in an effort to find ways to improve river water quality by additional treatments of discharged effluent from sewage treatment plant. Soil samples were taken from 3 sites including Gumi, Daegu and Gimhae along the Nakdong river. Reductions of infiltration rates following increases in operating time was investigated in each soil sample, along with the analysis of removal efficiencies of various pollutants according to different depths and infiltration rates. The results show incremental development of clogging on the soil surface with increases in operation time, and illustrate exponential decrease in the infiltration rate. The time required for the removal of the clog from the soil surface was longer than 2 weeks for all soil samples analyzed. The stable infiltration rates for soils were 5 m/day for Gumi and for Daegu and Gimhae was 1 m/day. In unsaturated soils dissolved oxygen levels increased following the increase of filtration depth, suggesting that alternating application of flood and rest for raw-water supply effectively keeps the soil environment aerobic. For all soils, the nature of pollutant removal depending on the depth of filtration remained the same regardless of the infiltration rate. Most of the BOD and turbidity were removed within 1.2 m, about 30% of COD was removed within 3.6m and was expected to be removed further with increases in filtration depth. Nitrification occurred near the surface of all soils; however there was no significant removal of nitrogen in the filtration depths tested in this study. Although removal rate of phosphorus was low for Gumi's soil, it was high enough for other soils, suggesting that the method developed in this study could significantly improve river water quality.

Expansion of Riparian Vegetation Due to Change of Flood Regime in the Cheongmi-cheon Stream, Korea (청미천에서 홍수 유황의 변화에 따른 하안식생의 확장)

  • Jin, Seung-Nam;Cho, Kang-Hyun
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.4
    • /
    • pp.322-326
    • /
    • 2016
  • The distribution of floodplain vegetation is mainly affected by hydrological and hydraulic processes. In this study, we investigated changes in the vegetation distribution due to flood discharge alteration, and the relationship between the vegetation types and the flood frequency during the last ten-year period in the Cheongmi-cheon Stream. Flood discharge of the Cheongmi-cheon Stream tended to decrease from 2006 to 2016. It has greatly decreased to less than $160m^3/s$ since 2013. This resulted in the settlement of Phragmites japonica to the wide sand bar at the Cheongmi-cheon Stream, even though it had sparse vegetation before 2013. The sand bar was fully covered with P. japonica in 2016. Vegetation communities in the floodplain were classified by dominant species, i.e. the annual-hygrophytic, the perennial hygrophytic and the mesophytic communities. Analysis of the relationship between the vegetation communities and the flood frequency shows the annual hygrophytes, perennial hygrophytes and the mesophytes communities distributed in the range of under 1 year, 1-10 year and over 7 year flood inundation area, respectively. In conclusion, distribution of the floodplain vegetation is closely related with the flood discharge and frequency in the Cheongmi-cheon Stream.

Natural, Nature-based Features (NNbF) - A Comparative Analysis with Nature-based Solutions (NbS) and Assessment of Its Applicability to Korea (자연/자연기반 특징(NNbF) - 자연기반해법(NbS)과 비교분석 및 국내적용성 평가)

  • Hyoseop Woo
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.2
    • /
    • pp.31-39
    • /
    • 2023
  • NNbF is a newly emerging approach to reduce flood risk in coastal and fluvial areas using natural features or engineered nature-based features with the expectation of co-benefits of provisional, regulating, and socio-cultural services provided by the ecosystem. NNbF is not quite different from existing, related terms based on nature, such as NbS, Eco-DRR, NI, GI, EwN, and BwN, for all these terms include expectation of benefits for human societies by directly utilizing or mimicking nature's ecological functions. If we focus on the comprehensiveness of each term's subject and object, we can say that NbS > NNbF > (Eco-DRR, NI/GI). Among the 18 measures introduced in the NNbF International Guideline in the river and floodplain management category, it was found that measures of wash lands and floodplain restoration, including levee setback/removal and side-channel restoration, seemed to be the most applicable to rivers in Korea. These selected measures could be more effective when river managers purchase riparian lands along river courses by relevant laws for river water-quality protection.

The Spatial Fuzzy Approach to Multi-Criteria Decision Analysis for Flood Management (홍수터 관리 최적대안 결정을 위한 공간퍼지접근)

  • Lim, Kwang-Suop;Choi, Si-Jung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1647-1651
    • /
    • 2009
  • The uncertainty or imprecision associated with vague parameters and weighting sets, reduces the ability to decide what alternative is better for a particular location. To efficiently reduce the effect of imprecision frequently arising in available information, fuzzy theory has been used to improve consideration of imprecision in a Multi-Criteria Decision Analysis (MCDA) problem. Fuzzy logic offers a way to represent and handle imprecision present in continuous real world applications. A GIS implementing fuzzy set theory, (referred to in this paper as the "Spatial Fuzzy Approach") enables decision makers to express imprecise concepts associated with geographic data and provides decision makers the ability to have even more definition and discrimination in terms of the best alternatives for a particular spatial location. This study is focused on addressing questions pertaining to the methodology of floodplain analysis using GIS and Spatial Fuzzy MCDA to evaluate flood damage reduction alternatives. The issues will be examined in a case study of the Suyoung River Basin in Pusan, Korea.

  • PDF