• Title/Summary/Keyword: Flooding condition

Search Result 171, Processing Time 0.023 seconds

Application of the LISFLOOD-FP model for flood stage prediction on the lower mankyung river (만경강 하류 홍수위 예측을 위한 LISFLOOD-FP 모형의 적용성 검토)

  • Jeon, Ho-Seong;Kim, Ji-sung;Kim, Kyu-ho;Hong, il
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.6
    • /
    • pp.459-467
    • /
    • 2016
  • LISFLOOD-FP model in which channel flows are resolved separately from the floodplain flows using either a kinematic or diffusive wave approximation has been used to analyze flooding behavior on the lower Mankyung River influenced by backwater. A calibration and validation process was applied using the previous flood events to assess the model performance. Sensitivity analysis was conducted for main calibrated parameters, such as Manning roughness coefficient and downstream boundary condition. Also, we examined the effect of warm-up for the initial conditions. The results show that the computed hydrograph is in good agreement with measured data on the study reach, even though it was a hydrologic kinematic wave model. The sensitive analysis show that the difference between the computed results may be greater depending on the used calibrated parameters and that the sufficient calibration/validation process against various flood events is necessary. If the flood inundation simulation is performed using the validated model, it is expected to be able to contribute about river planning and policy decision-making for flood damage reduction.

Analysis of Hydraulic Effect by River Dredging in a Meandering Channel (하도준설이 사행하천에 미치는 수리학적 영향 분석)

  • KIM, Tae-Hyeong;KIM, Byung-Hyun;HAN, Kun-Yeun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.4
    • /
    • pp.14-30
    • /
    • 2015
  • This paper attempted to analyze the hydraulic effects that the dredging can take as an alternative to reduce possible damages of flooding due to the overflow of river levee in meandering rivers, where riverbed aggradation, seepage and erosion may occur. In order to make a hydraulic analysis in a section of meandering rivers, a two-dimensional hydraulic analysis model, RMA-2, was selected. The GIS was applied to construct two-dimensional finite element grids to consider the hydraulic conditions before and after dredging. The water surface elevations, depths, velocities, and tractive forces were compared before and after the dredging. The difference of water surface elevation between the inside and outside of river was turned out to be the maximum value of 0.58m under the design flood condition. It could be evaluated that the tractive force at the bank decreased about 42 to 67% on average for all the sections. These results could give valuable information that the dredging of the stream channel at the meandering sections decreased the risk of overflow, seepage and erosion of the banks. The methodologies given in this study will contribute to mitigating the flood damages in the surrounding farmlands.

Flood Forecasting and Warning System using Real-Time Hydrologic Observed Data from the Jungnang Stream Basin (실시간 수문관측자료에 의한 돌발 홍수예경보 시스템 -중랑천 유역을 중심으로-)

  • Lee, Jong-Tae;Seo, Kyung-A;Hur, Sung-Chul
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.1
    • /
    • pp.51-65
    • /
    • 2010
  • We suggest a simple and practical flood forecasting and warning system, which can predict change in the water level of a river in a small to medium-size watershed where flash flooding occurs in a short time. We first choose the flood defense target points, through evaluation of the flood risk of dike overflow and lowland inundation. Using data on rainfall, and on the water levels at the observed and prediction points, we investigate the interrelations and derive a regression formula from which we can predict the flood level at the target points. We calculate flood water levels through a calibrated flood simulation model for various rainfall scenarios, to overcome the shortage of real water stage data, and these results as basic population data are used to derive a regression formula. The values calculated from the regression formula are modified by the weather condition factor, and the system can finally predict the flood stages at the target points for every leading time. We also investigate the applicability of the prediction procedure for real flood events of the Jungnang Stream basin, and find the forecasting values to have close agreement with the surveyed data. We therefore expect that this suggested warning scheme could contribute usefully to the setting up of a flood forecasting and warning system for a small to medium-size river basin.

Sedimentologic Linkage of depositional environments of Han River and Kyunggi Bay, Korea (한강 유역과 경기만 퇴적환경의 연계성)

  • 오재경;방기영
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.3
    • /
    • pp.225-236
    • /
    • 2003
  • In order to understand the relationship of depositional environment between fluvial and estuarine-embayment in Han River system, including depositional change in main Han River, more than 250 bottom sediment and 70 suspended sediment were analyzed with hydrologic data. Based on the previous data, the study area can be divided into two environment(fluvial and estuarine-embayment) by Singok underwater dam. The gravelly facies occurs in the South and North Han Rivers and sandy and silty facies occupies in the main Han River. Depositional environment of main Han River changed mainly because of limited sediment transport and hydrological condition. In the estuarine-embayment environment, coarse-grained sediments are dominant in tidal channel and of shore whereas fine and poorly sorted sediments are observed in coastal area. During moderate period, relationship between fluvial-estuarine-embayment system is discontinuou s because of flow restriction by artificial construction such as dam and underwater dam, so that each river system characterizes the individual environment. Fluvial and estuarine system is influenced by tide and, thus, transition zone of estuarine- embayment system moves landward. During flooding period, however, each river system is integrated as continuous depositional system by high discharge and, thus, transition zone of fluvial-estuarine-embayment system moves seaward. For further detailed systems about the lower Singok under-water dam, joint research of South-North Korea should be necessary.

Optimization of Synthesis Condition and Determination of Residue for Polyamine Type Flocculant (폴리아민계 고분자 응집제의 합성조건 최적화 및 잔류물분석)

  • Choi, Soo-Young;Park, Lee-Soon;Im, Sung-Hyun;Ryoo, Jae-Jeong;Choi, Sang-June;Hwang, Won-Joo
    • Applied Chemistry for Engineering
    • /
    • v.9 no.7
    • /
    • pp.1043-1046
    • /
    • 1998
  • Aluminium based inorganic flocculants are extensively used in this country in the removal of fine particles present in the raw water for the production of drinking water. These inorganic flocculants, however, have potential hazard of high residual aluminium ions in the treated waters, which is known to be one of the reasons of alzheimer's disease. Inorganic flocculants alone are sometimes incapable of treating water when there are excessive turbidity in the raw water sources due to flooding. A polyamine type polymeric flocculant has long been used to treat raw water in the drinking water production in the European countries and United State of America. The optimum reaction conditions such as mole ratio of epichlorohydrin(EPI) to dimethylamine(DMA), reaction temperature and time for each stage for the pilot scale preparation of polyamine from EPI-DMA was studied in this work. The variation of intrinsic viscosity and flocculating efficiency in the water treatment of the synthesized polyamines were evaluated. The residual materials after polymerization reaction were analyzed by gas chromatography to study the effect of variation of reaction conditions.

  • PDF

A study of Spatial Multi-Criteria Decision Making for optimal flood defense measures considering regional characteristic (지역특성을 고려한 홍수방어대안 제시를 위한 공간 다기준의사결정 기법 적용 방안 연구)

  • Lee, Eunkyung;Ji, Jungwon;Yi, Jaeeung
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.4
    • /
    • pp.301-311
    • /
    • 2018
  • Recently, the flood inundation caused by heavy rainfall in urban area is increasing due to global warming. The variability of climate change is described in the IPCC 5th report (2014). The precipitation pattern and hydrological system is varied by climate change. Since the heavy rainfall surpassed the design capacity of the pipeline, it caused great damage in metropolitan cities such as Seoul and Busan. Inundation in urban area is primarily caused by insufficient sewer capacity and surplus overflow of river. Inundation in urban area with concentrated population is more dangerous than rural and mountains areas, because it is accompanied by human casualties as well as socio-economic damage to recover destruction of roads, brides and underground spaces. In addition, various factors such as an increase in impervious area, a short time of concentration to outlet, and a shortage of sewer capacity's lack increase flooding damage. In this study, flood inundation analysis was conducted for vulnerable areas using XP-SWMM. Also, three structural flood prevention measures such as drainage pipeline construction, detention reservoir construction, and flood pumping station construction are applied as flood damage prevention alternatives. The flood data for each alternative were extracted by dividing the basin by grid. The Spatial Compromise Programming are applied using flood assessment criteria, such as maximum inundation depth, inundation time, and construction cost. The purpose of this study is to reflect the preference of alternatives according to geographical condition even in the same watershed and to select flood defense alternative considering regional characteristics.

Effects of Different Vetch Sward Treatments on Soil and Rice Growth in No-till Direct-sown Rice-Vetch Interrelaying Cropping Systems (벼-자운영 연속 무경운 직파재배에서 자운영 이용방법 차이가 토양 및 벼 생육에 미치는 영향)

  • 홍광표;김장용;강동주;강남대;최진용
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.5
    • /
    • pp.564-570
    • /
    • 1997
  • Field experiments were carried out to investigate the effects of different residue treatment of vetch sward on soil improvement, rice growth and grain yield from 1995 to 1996. With Chinese milkvetch, pH, Ca, and Mg of paddy soil were increased in subsoil(10~20cm soil depth), and organic matter, P$_2$ $O_{5}$, and K were increased in top soil (0~10cm soil depth). Redox potential of the paddy soil with milkvetch residue was severely reduced at earlier flooding period, and recovered gradually as rice growth continued. Weeds were more abundant in the paddy with unchanged vetch stand. The most dominant weed species in the paddy soil with vetch sward residue was Echinochloa crus-galli, followed by Leersia japonica, Polygonum hydropiper in the order of abundance. Seedling establishment ratio of rice directly sown over vetch-sward was lower than in conventional tillage paddy(no-vetch, tilled) condition. Rice growth pattern, however, was not significantly affected by vetch sward treatments. The number of tillers per square meter and plant height at heading date were not significantly different among the vetch-sward treatments. Grain yield was the highest in plough of vetch vegetation, followed by conventional (no-vetch, tilled), live-mulching of vetch, vetch-removed, and vetch-desiccated by weedcide. The whole grain rice yield was the lowest in vetch-desiccated by weedcide.

  • PDF

Dormancy - breaking Conditions of Bulrush(Scirpus juncoides Roxb.) (올챙고랭이(Scirpus juncoides Roxb.) 종실(種實)의 휴면타파조건(休眠打破條件)에 관한 연구(硏究))

  • Huh, S.M.;Guh, J.O.;Son, P.K.
    • Korean Journal of Weed Science
    • /
    • v.6 no.2
    • /
    • pp.102-109
    • /
    • 1986
  • To know the ecological pattern of bulrush (Scirpus juncoides) seeds in dormancy-breaking responses as affected by different ripening processes, storage conditions, germination conditions, and some of known chemicals concerned, the study was conducted. Among other conditions detected, the burial in 2 cm depth paddy soil, $5^{\circ}C$ storage temperature, pre-maturing process (Green color), high concentration of chemicals used, and flooding paddy surfaces were the most efficient conditions for bulrush seeds to break dormancy and germinate, respectively.

  • PDF

Weed Growth and Effective Control in Direct-seeded Rice Fields (벼 건답직파재배답(乾畓直播栽培畓)에서의 잡초발생(雜草發生) 및 효과적(效果的)인 방제체계(防除體系))

  • Choi, Chung-Don;Moon, Byeong-Chul;Kim, Soon-Chul;Oh, Yun-Jin
    • Korean Journal of Weed Science
    • /
    • v.15 no.3
    • /
    • pp.175-182
    • /
    • 1995
  • The experiment was conducted to obtain basic information on weed ecology and effective weed control in direct-seeded rice Gelds at National Yeongnam Agricultural Experiment Station in 1994. Double cropping system of rice-barley reduced weed occurrence about 30% as compared with rice single cropping due to allelopathic effect of barley residue or stubble. Occurrences of red rice (weedy rice), barnyard grass and water foxtail were closely related with tillage method; the greatest occurred in no tillage plot followed by rotavation only and plow plus rotavation. Period of seed germination of barnyard grass and carbgrass varied with temperature and soil depth. In the same environmental condition, the germination period of barnyard grass shortened 3 to 5 days as compared with that of carbgrass. Two systematic applications of herbicides, that is, the first application at 10 to 15 days after seeding and the second at just after flooding, were the most recommendable system in dry-seeded rice field in terms of weed suppression and yield capacity.

  • PDF

Urban Runoff According to Rainfall Observation Locations (강우 측정 지점에 따른 도시 유역 유출량 변화 분석)

  • Hyun, Jung Hoon;Chung, Gunhui
    • Journal of Wetlands Research
    • /
    • v.21 no.4
    • /
    • pp.305-311
    • /
    • 2019
  • Recently, global climate change causes abnormal weather and disaster countermeasures do not provide sufficient defense and mitigation because they were established according to the historical climate condition. Repeated torrential rains, in particular, are causing damage even in the robust urban flood defense system. Therefore, in this study, the change of runoff considering the spatial distribution of rainfall and urban characteristics was analyzed. For rainfall concentrated in small catchment, rainfall in the watershed must be accurately measured. This study is based on the rainfall data observed with Automated Surface Observing System (ASOS) and Automatic Weather Stations (AWS) provided by the Seoul Meteorological Administration. Effluent from the pumping station was estimated using the EPA-SWMM model and compared and analyzed. Catchments with rainwater pumping station are small with large portion of impermeable areas. Thus, when the ASOS data where is located from from the chatchment, runoff is often calculated using rainfall data that is different from rainfall in the catchment. In this study, the difference between rainfall data observed in the AWS near the catchment and ASOS away from the catchment was calculated. It was found that accurate rainfall should be used to operate rainwater pumping stations or forecast urban flooding floods. In addition, the results of this study may be helpful for estimating design rainfall and runoff calculation.