• 제목/요약/키워드: Flooding accident

검색결과 64건 처리시간 0.03초

선박 침수사고를 대비한 비상용 배수시스템 용량추정 프로세스에 관한 연구 (Estimation Process for the Capacity of Emergency Drainage System on a Ship after Flooding Accident)

  • 박병수;김성수;이순섭;강동훈;조현국
    • 수산해양교육연구
    • /
    • 제28권6호
    • /
    • pp.1739-1750
    • /
    • 2016
  • This paper proposed a process for estimating the required capacity of emergency drainage system on a ship when the ship encounters a flooding accident. The process was established by selecting target vessel, making a scenario of flooding accident, considering static behavior of flooding water and the effect of ship motion due to ocean condition. In order to obtain the object of the research, MATLAB codes were developed for analyzing of static behavior of flooding water. Additionally, Ansys AQWA-NAUT was used to analyze the motion of the ship under an ocean condition and then the effect of ship motion was considered when the static behavior of flooding water was studied. The research exploited a trawler as a target vessel, and estimate the necessary capacity of the trawler's emergency drainage system by simulating a flooding water in the vessel.

Strategic analysis on sizing of flooding valve for successful accident management of small modular reactor

  • Hyo Jun An;Jae Hyung Park;Chang Hyun Song;Jeong Ik Lee;Yonghee Kim;Sung Joong Kim
    • Nuclear Engineering and Technology
    • /
    • 제56권3호
    • /
    • pp.949-958
    • /
    • 2024
  • In contrast to all-time flooded small modular reactor (SMR) systems, an in-kind flooding safety system (FSS) has been proposed as a passive safety system applicable to small modular reactors (SMRs) that adopt a metal containment vessel (MCV). Under transient conditions, the FSS can provide emergency cooling to dry reactor cavities and sustain long-term coolability using re-acquired evaporated steam in the reactor building on demand. When designing an FSS, the effect of the flooding flow area is vital as it affects the overall accident sequence and safety. Therefore, in this study, a MELCOR model of a reference SMR is developed and numerical analysis is performed under postulated accident scenarios. Without flooding, the MCV pressure of the reactor module exceeds the design pressure before core damage. To prevent core damage, an emergency flooding strategy is devised using various flow path parameters and requirements to ensure an adequate emergency coolant supply before the core damage is investigated. The results indicate that a flow area exceeding 0.02 m2 is required in the FSS to prevent MCV overpressure and core damage. This study is the first to report a strategic analysis for appropriately sizing an FSS flooding valve applicable to innovative SMRs.

A Study on Flooding·Sinking Simulation for Cause Analysis of No. 501 Oryong Sinking Accident

  • Lee, Jae-Seok;Oh, Jai-Ho;Lee, Sang-Gab
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2018년도 추계학술대회
    • /
    • pp.241-247
    • /
    • 2018
  • Deep-sea fishing vessel No. 501 Oryong was fully flooded through its openings and sunk to the bottom of the sea due to the very rough sea weather on the way of evasion after a fishing operation in the Bearing Sea. As a result, many crew members died and/or were missing. In this study, a full-scale ship flooding and sinking simulation was conducted, and the sinking process was analyzed for the precise and scientific investigation of the sinking accident using a highly advanced Modeling & Simulation (M&S) system of the Fluid-Structure Interaction (FSI) analysis technique. To objectively secure the weather and sea states during the sinking accident in the Bering Sea, time-based wind and wave simulation at the region of the sinking accident was conducted and analyzed, and the weather and sea states were realized by simulating the irregular strong wave and wind spectrums. Simulation scenarios were developed and full-scale ship and fluid (air & seawater) modeling was performed for the flooding sinking simulation, by investigating the hull form, structural arrangement & weight distribution, and exterior inflow openings and interior flooding paths through its drawings, and by estimating the main tank capacities and their loading status. It was confirmed that the flooding and sinking accident was slightly different from a general capsize and sinking accident according to the simple loss of stability.

  • PDF

CORQUENCH 코드를 활용한 중수로 calandria vault에서의 MCCI 거동 분석 (Evaluation of MCCI Behaviors in the Calandria Vault of CANDU-6 Plants Using CORQUENCH Code)

  • 유선오
    • 한국압력기기공학회 논문집
    • /
    • 제17권2호
    • /
    • pp.90-100
    • /
    • 2021
  • Molten corium-concrete interaction (MCCI) is one of the most important phenomena that can lead to the potential hazard of late containment failure due to basemat penetration during a severe accident. In this study, MCCI analytical models of the CORQUENCH code were prepared through verification calculations of several experiments, which had been performed using concrete types similar to those of the calandria vault floor in CANDU-6 plants. The behaviors of thermal-hydraulic variables related to MCCI phenomena were analyzed under the conditions of dry floor and water flooding during the severe accident stemming from a hypothetic station blackout. Uncertainty analyses on the ablation depth were also carried out. It was estimated that the concrete ablation was not interrupted due to the continuous MCCI process under the dry condition but was terminated within 24 hours under the water flooding condition. It was confirmed that the water flooding as a mitigating action was effective to achieve the quenching and thermal stabilization of the melt discharged from the calandria vessel, showing that the present models are capable of reasonably simulating MCCI phenomena in CANDU-6 plants. This study is expected to provide the technical bases to the accident management strategy during the late-phase severe accidents.

제501 오룡호 침몰사고 원인분석을 위한 침수·침몰 시뮬레이션 연구 (A Study on Flooding·Sinking Simulation for Cause Analysis of No. 501 Oryong Sinking Accident)

  • 이재석;정현섭;오재호;이상갑
    • 한국항해항만학회지
    • /
    • 제41권6호
    • /
    • pp.451-466
    • /
    • 2017
  • 원양어선 제501 오룡호는 황천 중인 베링해에서 조업 후 피항하던 중 개구부를 통한 침수로 인하여 침몰하였으며 많은 선원들이 사망하고 실종되었다. 본 연구에서는 유체-구조 연성(Fluid-Structure Interaction, FSI) 해석기법의 고도 정밀 M&S(highly advanced Modeling & Simulation) 시스템을 사용하여 실선 침수 침몰 시뮬레이션을 수행하여 침몰사고의 과정을 정확하고 과학적으로 분석하고자 하였다. 베링해 침몰사고 시의 기상 및 해상상태를 객관적으로 확보하기 위하여 침몰사고 지역의 시간대별 기상 및 해상 시뮬레이션을 수행하여 침몰사고 당시 파랑과 강풍 등을 분석하고, 불규칙 파랑과 강풍 스펙트럼을 사용하여 구현하였다. 사고선박의 선체 도면 등을 통하여 선박의 선형, 배치 및 중량 분포와 외부 해수 침수 개구부 및 선내 침수 경로를 분석하고 주요 탱크들의 용적과 그들의 중량 분포를 추정하여 침수 침몰 시뮬레이션을 위한 시나리오를 작성하고, 사고선박의 전선과 유체(공기 및 해수)를 상세 모델링을 하였다. 본 연구를 통하여 침수 침몰사고는 단순한 복원성의 부족으로 인한 일반적인 전복 침몰사고와는 다소 차이가 있다는 것도 확인할 수 있었다.

Effect of Kinetic Parameters on Simultaneous Ramp Reactivity Insertion Plus Beam Tube Flooding Accident in a Typical Low Enriched U3Si2-Al Fuel-Based Material Testing Reactor-Type Research Reactor

  • Nasir, Rubina;Mirza, Sikander M.;Mirza, Nasir M.
    • Nuclear Engineering and Technology
    • /
    • 제49권4호
    • /
    • pp.700-709
    • /
    • 2017
  • This work looks at the effect of changes in kinetic parameters on simultaneous reactivity insertions and beam tube flooding in a typical material testing reactor-type research reactor with low enriched high density ($U_3Si_2-Al$) fuel. Using a modified PARET code, various ramp reactivity insertions (from $0.1/0.5 s to $1.3/0.5 s) plus beam tube flooding ($0.5/0.25 s) accidents under uncontrolled conditions were analyzed to find their effects on peak power, net reactivity, and temperature. Then, the effects of changes in kinetic parameters including the Doppler coefficient, prompt neutron lifetime, and delayed neutron fractions on simultaneous reactivity insertion and beam tube flooding accidents were analyzed. Results show that the power peak values are significantly sensitive to the Doppler coefficient of the system in coupled accidents. The material testing reactor-type system under such a coupled accident is not very sensitive to changes in the prompt neutron life time; the core under such a coupled transient is not very sensitive to changes in the effective delayed neutron fraction.

고도 정밀 M&S 시스템을 이용한 해난사고 원인규명 (Marine Accident Cause Investigation using M&S System)

  • 이상갑
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2014년도 춘계학술대회
    • /
    • pp.36-37
    • /
    • 2014
  • It is necessary to develop highly sophisticated Modeling & Simulation (M&S) system for the scientific investigation of marine accident causes and for the systematic reproduction of accidental damage procedure. To ensure an accurate and reasonable prediction of marine accidental causes, such as collision, grounding and flooding, full-scale ship M&S simulations would be the best approach using hydrocode, such as LS-DYNA code, with its Fluid-Structure Interaction (FSI) analysis technique. The objectivity of this paper is to present three full-scale ship collision, grounding and flooding simulation results of marine accidents, and to show the possibility of the scientific investigation of marine accident causes using highly sophisticated M&S system.

  • PDF

로로 여객선의 침수 및 침몰사고 원인규명 (Cause Investigation for the Flooding and Sinking Accident of the Ro-Ro Ferry Ship)

  • 정영구;이재석;하정훈;이상갑
    • 한국항해항만학회지
    • /
    • 제44권3호
    • /
    • pp.264-274
    • /
    • 2020
  • 로로 페리선은 급선회 시 선박의 선미부 객실의 증개축으로 인한 무게중심 상승, 과도한 화물적재, 발라스트 부족 등으로 인한 복원성 결여 및 고박 부실 등의 여러 가지 원인으로 전복되어 해저에 침몰하였다. 이 연구의 목적은 유체-구조 연성(Fluid-Structure Interaction; FSI) 해석기법을 이용하여 급선회에 따른 빠른 침수 및 전복에 이어 침몰사고로 진척된 원인을 과학적이고 정확하게 규명하고 분석하는 것이다. 이를 위해 사고 당시의 동영상과 사진들을 분석하여 시간에 따른 선박의 정확한 자세를 구현하고, 이에 따른 화물 이동과 선체 외부의 해수 유입구와 선체 내부에서의 유입된 해수의 이동 경로에 따른 해수 유입량을 실선 부양 시뮬레이션 및 유체정역학적 특성치 프로그램을 사용하여 정확히 검증하여 실선 침수·침몰 시뮬레이션을 수행하여 사고원인을 정확하고 객관적으로 규명하고자 하였다.

침수된 조타불능선의 악천후에서의 거동연구 (A Study on Motion of a Flooding and Un-steerable Vessel in Stormy Weather Condition)

  • 김성수;박병수;강동훈;이종현;조현국
    • 수산해양교육연구
    • /
    • 제29권1호
    • /
    • pp.286-296
    • /
    • 2017
  • This paper conducted a simulation to research the motion of a vessel, which had the flooding accident in the Bering Sea in 2014, thereby being flooded and un-steerable. As the wind condition was very harsh, the vessel was modeled as 3D including large upper deck structures and the Fujiwara's method was used for an estimation of the effect of wind forces and moments acting on ship. In the case of wave influence, AQWA-Drift that enables considering the effects of drift force and AQWA-Naut that enables considering the effects of green water were mainly used. Basically, loading and flooding condition were equal to the accident condition but half-drained condition was also used to consider drain ability. Furthermore, both 6 DOF and 5 DOF option that Yaw motion is fixed, were utilized to compare the steerable and un-steerable condition. As a result, the author found out that what roll angle triggers green water, how often it happens, and how the vessel moves on the stormy weather condition.

MOUSE를 활용한 미사리 조정경기장의 정량적 침수해석 (Quantifying Inundation Analysis in Misari motorboat racing stadium using MOUSE)

  • 황환국;한상종;정연규
    • 상하수도학회지
    • /
    • 제24권5호
    • /
    • pp.549-560
    • /
    • 2010
  • Recently, heavy rainfalls due to the climate change in Korea have caused inundation problems in urban sewer networks. In july 2006, a flooding accident at Misari motorboat racing stadium near the Han river occurred due to the effect of record-breaking outflow discharge from Paldang-dam. The purpose of this study was to simulate and analyze the flooding accident at Misari stadium by MOUSE model. The results of simulation analysis indicated that the total flood volume was $1,313,450m^3$. The effect of back water was 85.9% of the total volume which was caused by the manhole accident, and the effect of accumulated runoff was 14.1% of total volume which was caused by non-return valve shutdown. The simulation results of this MOUSE modeling that was linked to the boundary condition of the dynamic flows in the river by DWOPER model showed the potential of successful inundation analysis for sewer networks.