• Title/Summary/Keyword: Flooding Analysis

Search Result 516, Processing Time 0.035 seconds

Analysis of coastal city flooding in 2D and 3D considering extreme conditions and climate change (극한 조건과 기후변화를 고려한 2차원 및 3차원 해안 도시 침수 해석)

  • Jaehwan Yoo;Sedong Jang;Byunghyun Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.126-126
    • /
    • 2023
  • 최근 대한민국에서는 기후변화로 전국 각지에서 돌발성 호우와 태풍의 강도 및 발생빈도가 높아지고 있다. 이에 따라 주요 국가시설이 위치한 해안 도시의 2차원 3차원 모형을 통해 극한 조건하 침수 분석을 수행하였다. 먼저 해양수산부 "2019년 전국 심해설계파 보고서"를 기반으로 극치분포 중 Weibull 분포를 이용하여 극한 조건, 1,000년부터 1,000,000년 빈도의 재현기간의 파도 높이와 풍속을 계산하였다. 계산 결과를 SWAN(Simulating WAves Nearshore)의 입력값으로 해상에서 100m 간격의 파고 높이를 계산하였다. 이때 100m 간격으로는 방파제 지형을 정확히 해석하지 못하였기에, 상세파고 계산을 위한 Nesting 기법을 이용하여 20m 간격의 파고 결과를 도출하였고, 해안 도시 인근 해상에서 10.916m의 파고를 예측하였다. 또한, 예측된 파고를 이용해 EurOtop(2018) 매뉴얼의 경험식을 기반으로 연구 유역으로 유입되는 월류량 계산에 사용하였다. 결과로 16방위 중 SSE 방향, 1,000,000년 빈도 재현기간 조건에서 0.0306cms/m의 월파량을 예측했다. 예측된 자료를 바탕으로 2차원 침수해석은 FLO-2D 모형, 3차원 침수해석은 FLOW-3D 모형을 이용하였다. 2차원 침수해석 결과 주요 지점에서 0.18~0.33m의 침수가 예상되었고 3차원 침수해석 결과 동일한 지점에서 0.240~0.333m의 침수가 예상되었다. 모의 결과 2차원과 3차원 모형 간 침수 예측 결과가 0.3cm에서 6.1cm의 차이를 나타내어 모형 구축이 합리적으로 이뤄졌다고 판단하였으며 연구 유역에서는 침수가 예상된다는 결과를 도출하였다. 본 연구를 통해 기후변화에 따른 해안에 위치한 주요 도시지역과 국가 주요 시설물에 대한 침수해석을 실시하였고 분석결과를 생명과 재산을 보호하기 위한 대피계획 등 재난예방대책 수립에 활용할 수 있음으로 예상된다.

  • PDF

A Study on Technology Transfer of Bokto Seeding Method for Crop Production - Based on Theory of Asian and Pacific Center for Transfer of Technology(APCTT) - (복토직파재배기술의 수용과 기술 확산에 관한 연구 - 아시아태평양기술이전센터(APCTT) 이론을 중심으로 -)

  • Ahn, D.H.;Park, K.H.;Kang, Y.K.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.10 no.1
    • /
    • pp.29-41
    • /
    • 2008
  • This research was conducted to develop a technology transfer and farmer's extension of newly released technology of Bokto seeding method for crop and vegetable production based on the theory of Asian and Pacific Center for Transfer of Technology(APCTT). This technology has recently transferred to not only Korea but also other countries like North Korea, China, Japan, Taiwan, Russia and Africa(Cameroon, Sudan and South Africa) since 2005. It has known as a highly reduction of production cost in terms of labors, chemical fertilizer and pesticides as well as environmental friendly due to a deep and side banded placement of chemical fertilizer at basal application. In addition this technology was proven to a precision farming on sowing depth and mechanism of chemical application method and also highly resistant against disasters like typhoon, flooding, low temperature, drought and lodging due to silicate application. It has improved a constraints such as a poor seedling establishment, weed occurrence, lodging, low yield and poor grain and eating quality in the previous direct seeding methods but still have a problem in occurrence of weedy rice and ununiformed operation of wet or flooded soil condition. Also this technology has a limit in marketing and A/S system. Based on a theory of APCTT evaluation and analysis this technology may be more concentrated on establishment of a special cooperation team among researcher and scientists, extension workers, industry sections and governmental sectors in order to rapidly transfer this technology to farmer's field. Also there will be needed to operate a web site for this newly released technology to inform and exchange an idea, experiences and newly improved information. A feed back system might be operated in this technology as well to improve a technology under way on users' operation. Also user's manual will be internationally released and provided for farmer's instruction and training at field site.

Prediction of Climate Change Impacts on Streamflow of Daecheong Lake Area in South Korea

  • Kim, Yoonji;Yu, Jieun;Jeon, Seongwoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.169-169
    • /
    • 2020
  • According to the IPCC analysis, severe climate changes are projected to occur in Korea as the temperature is expected to rise by 3.2 ℃, the precipitation by 15.6% and the sea level by 27cm by 2050. It is predicted that the occurrence of abnormal climate phenomena - especially those such as increase of concentrated precipitation and extreme heat in the summer season and severe drought in the winter season - that have happened in Korea in the past 30 years (1981-2010) will continuously be intensified and accelerated. As a result, the impact on and vulnerability of the water management sector is expected to be exacerbated. This research aims to predict the climate change impacts on streamflow of Daecheong Lake area of Geum River in South Korea during the summer and winter seasons, which show extreme meteorological events, and ultimately develop an integrated policy model in response. We projected and compared the streamflow changes of Daecheong Lake area of Geum River in South Korea in the near future period (2020-2040) and the far future period (2041-2060) with the reference period (1991-2010) using the HEC-HMS model. The data from a global climate model HadGEM2-AO, which is the fully-coupled atmosphere-ocean version of the Hadley Centre Global Environment Model 2, and RCP scenarios (RCP4.5 and RCP8.5) were used as inputs for the HEC-HMS model to identify the river basins where cases of extreme flooding or drought are likely to occur in the near and far future. The projections were made for the summer season (July-September) and the winter season(November-January) in order to reflect the summer monsoon and the dry winter. The results are anticipated to be used by policy makers for preparation of adaptation plans to secure water resources in the nation.

  • PDF

A Comparative Study Between High and Low Infiltration Soils as Filter Media in Low Impact Development Structures

  • Guerra, Heidi B.;Geronimo, Franz Kevin;Reyes, Nash Jett;Jeon, Minsu;Choi, Hyeseon;Kim, Youngchul;Kim, Lee-Hyung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.130-130
    • /
    • 2021
  • The increasing effect of urbanization has been more apparent through flooding and downstream water quality especially from heavy rainfalls. In response, stormwater runoff management solutions have focused on runoff volume reduction and treatment through infiltration. However, there are areas with low infiltration soils or are experiencing more dry days and even drought. In this study, a lab-scale infiltration system was used to compare the applicability of two types of soil as base layer in gravel-filled infiltration systems with emphasis on runoff capture and suspended solids removal. The two types of soils used were sandy soil representing a high infiltration system and clayey soil representing a low infiltration system. Findings showed that infiltration rates increased with the water depth above the gravel-soil interface indicating that the available depth for water storage affects this parameter. Runoff capture in the high infiltration system is more affected by rainfall depth and inflow rates as compared to that in the low infiltration system. Based on runoff capture and pollutant removal analysis, a media depth of at least 0.4 m for high infiltration systems and 1 m for low infiltration systems is required to capture and treat a 10-mm rainfall in Korea. A maximum infiltration rate of 200 mm/h was also found to be ideal to provide enough retention time for pollutant removal. Moreover, it was revealed that low infiltration systems are more susceptible to horizontal flows and that the length of the structure may be more critical that the depth in this condition.

  • PDF

Development of an Inventory-Based Flood Loss Estimation Method for Rural Areas (인벤토리 기반 농촌지역 홍수손실 평가기법 개발)

  • Kim, Sinae;Lee, Jonghyuk;Jun, Sang-Min;Choi, Won;Kang, Moon-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.6
    • /
    • pp.65-78
    • /
    • 2023
  • In recent times, the frequency and intensity of natural disasters, such as heavy rains and typhoons, have been increasing due to the impacts of climate change. This has led to a rise in social and economic damages. Rural areas, in particular, possess limited disaster response capabilities due to their underdeveloped infrastructure and are highly vulnerable to flooding. Therefore, it is crucial to establish preventative and responsive measures. In this study, an Inventory-Based Flood Loss Estimation (IB-FLE) method utilizing high-resolution spatial information was developed for estimating flood-related losses in rural areas. Additionally, the developed approach was applied to a study area and compared with the Multidimensional Flood Damage Analysis (MD-FDA) method. Compared to the MD-FDA, the IB-FLE enables faster and more accurate estimation of flood damages and allows for the assessment of individual building and agricultural land losses using up-to-date information. The findings of this study are expected to contribute to the rational allocation of budgets for rural flood damage prevention and recovery, as well as enhancing disaster response capabilities.

Method for Measuring pH and Alkalinity of High-Pressure Fluid Samples : Evaluation through Artificial Samples (고압 유체 시료의 pH 및 알칼리도 측정 방법 : 가상 시료를 활용한 실용성 평가)

  • Minseok Song;Soohyeon, Moon;Gitak Chae;Jun-Hwan Bang
    • Journal of Soil and Groundwater Environment
    • /
    • v.29 no.1
    • /
    • pp.1-9
    • /
    • 2024
  • As part of monitoring technology aimed at verifying the stability of CO2 geologic storage and mitigating concerns about leakage, a method for measuring the pH and alkalinity of high-pressure fluid samples was established to obtain practical technology. pH measurement for high-pressure samples utilized a high-pressure pH electrode, and alkalinity was measured using the Gran titration method for samples collected with a piston cylinder sampler (PCS). Experimental samples, referencing CO2-rich water and CO2 geologic storage studies, were prepared in the laboratory. The PCS controls the piston, preventing CO2 degassing and maintaining fluid pressure, allowing mixing with KOH to fix dissolved CO2. Results showed a 6.1% average error in high-pressure pH measurement. PCS use for sample collection maintained pressure, preventing CO2 degassing. However, PCS-collected sample alkalinity measurements had larger errors than non-PCS measurements, limiting PCS practicality in monitoring field settings. Nevertheless, PCS could find utility in preprocessing for carbon isotope analysis and other applications. This research not only contributes to the field of CCS monitoring but also suggests potential applications in studies related to natural analogs of CCS, CO2-rock interaction experiments, core flooding experiments, and beyond.

Analysis of Hydraulic Effect by River Dredging in a Meandering Channel (하도준설이 사행하천에 미치는 수리학적 영향 분석)

  • KIM, Tae-Hyeong;KIM, Byung-Hyun;HAN, Kun-Yeun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.4
    • /
    • pp.14-30
    • /
    • 2015
  • This paper attempted to analyze the hydraulic effects that the dredging can take as an alternative to reduce possible damages of flooding due to the overflow of river levee in meandering rivers, where riverbed aggradation, seepage and erosion may occur. In order to make a hydraulic analysis in a section of meandering rivers, a two-dimensional hydraulic analysis model, RMA-2, was selected. The GIS was applied to construct two-dimensional finite element grids to consider the hydraulic conditions before and after dredging. The water surface elevations, depths, velocities, and tractive forces were compared before and after the dredging. The difference of water surface elevation between the inside and outside of river was turned out to be the maximum value of 0.58m under the design flood condition. It could be evaluated that the tractive force at the bank decreased about 42 to 67% on average for all the sections. These results could give valuable information that the dredging of the stream channel at the meandering sections decreased the risk of overflow, seepage and erosion of the banks. The methodologies given in this study will contribute to mitigating the flood damages in the surrounding farmlands.

Understanding of Surface Water-Groundwater Connectivity in an Alluvial Plain using Statistical Methods (통계기법을 활용한 충적층내 지하수-지표수 연계 특성 해석)

  • Kim, Gyoo-Bum;Son, Young-Chul;Lee, Seung-Hyun;Jeong, An-Chul;Cha, Eun-Jee;Ko, Min-Jeong
    • The Journal of Engineering Geology
    • /
    • v.22 no.2
    • /
    • pp.207-221
    • /
    • 2012
  • A statistical analysis of time series of water level at 27 groundwater monitoring wells was conducted to analyze the surface water-groundwater connectivity in the wide alluvial plains surrounding the Nakdong River, Korea. Change in groundwater level is strongly related to river water level, yielding an average cross-correlation coefficient of 0.601, which is much higher than that between rainfall and groundwater level (0.125). Principal component analysis of groundwater level indicates that wells in the study area can be classified into two groups: wells in Group A are located close to a river, have water levels closely related to river level, and generally show a large increase in groundwater level during heavy rainfall. On the other hand, wells in Group B located far from a river are relatively less related to river level. Including hydrologic and statistical analyses, geochemical analysis and temperature monitoring are additionally required to reveal the relationship between surface water level and groundwater level, and to assess the possibility of groundwater flooding.

Combination Effects of Large Dam and Weirs on Downstream Habitat Structure: Case Study in the Tamjin River Basin, Korea (대형 댐과 농업용 보가 하류 서식처 특성에 미치는 영향 연구: 탐진강 유역을 대상으로)

  • Ock, Giyoung;Kang, Ji-Hyun;Park, Hyung-Geun;Kang, Dong-Won
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.4
    • /
    • pp.638-646
    • /
    • 2018
  • The purpose of this study was to investigate the long-term habitat morphological alteration resulting from a large dam and weirs in the Tamjin River. To achieve this, we carried out a hydrograph analysis and a substrate size distribution analysis. We also estimated the channel width, bar area and vegetation encroachment using aerial photographs taken before and after the construction of the dam and weirs. The result of the hydrological analysis showed that flooding downstream was greatly reduced with small peaks occurrence after the dam construction. Interestingly, normal hydrographs in the main channel appeared just after tributary conjunction. There was a similar pattern in the substrate size analysis. Despite coarsened substrate just downstream of the dam site, more sand appeared again after introduction of the tributary. However, there was an increase in the bar area downstream of the dam's channels with most bars covered with vegetation. The channel width increased at the upper area of weirs through impoundment, but decreased downstream because of vegetation encroachment. This study indicate that unregulated tributary plays an important role in restoring hydro-physical habitat conditions in mainstream channels below a large dam. However, numerous weirs could be a causal factor to accelerate habitat deterioration in the dam downstream channels.

Analysis for Precipitation Trend and Elasticity of Precipitation-Streamflow According to Climate Changes (기후변화에 따른 강우 경향성 및 유출과의 탄성도 분석)

  • Shon, Tae Seok;Shin, Hyun Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5B
    • /
    • pp.497-507
    • /
    • 2010
  • Climate changes affect greatly natural ecosystem, human social and economic system acting on constituting the climate system such as air, ocean, life, glacier and land, etc. and estimating the current impact of climate change would be the most important thing to adapt to the climate changes. This study set the target area to Nakdong river watershed and investigated the impact of climate changes through analyzing precipitation tendency, and to understand the impact of climate changes on hydrological elements, analyzed elasticity of precipitation-streamflow. For the analysis of precipitation trend, collecting the precipitation data of the National Weather Service from major points of Nakdong river watershed, resampling them at the units of year, season and month, used as the data of precipitation trend analysis. To analyze precipitation-streamflow elasticity, collecting area average precipitation and long-term streamflow data provided by WAMIS, annual and seasonal time-series were analyzed. In addition, The results of this study and elasticity, and other abroad study compared with the elasticity analysis and the validity of this study was verified. Results of this study will be able to be utilized for study on a plan to increase of flood control ability of flooding constructs caused by the increase of streamflow around Nakdong river watershed due to climate changes and on a plan of adapting to water environment according to climate changes.