• Title/Summary/Keyword: Flood wave propagation

Search Result 30, Processing Time 0.027 seconds

Tidal Propagation in the Keum River (금강 感趙구간의 조석전파)

  • 최병호;안원식
    • Water for future
    • /
    • v.18 no.1
    • /
    • pp.67-73
    • /
    • 1985
  • Tidal propagation in the Keum River has been routinely handled by numerical integration of the long fravity wave equation by Dronkers. The dynamic equations include non-linear terms thereby reproducing the shallow water tides. The model was used to compute tidal distribution of the Kum River for aveage spring, mean, neap tidal conditions and further utilised to investigate the waterlevel response within tidal reaches by combined tide and flood discharge effects. The objective of this initial study is to investigate the tidal dynamics of the lower reaches of the Keum River under the condition of before-cross-channel barrage construction.

  • PDF

A Study on the Numerical Modeling for the Floodwave Analysis in a River -Huogi Dam-Break Floods (하천에서의 홍수파해석을 위한 수치모형의 개발-효기댐 파괴에 따른 홍수파 해석을 중심으로)

  • 한건연
    • Water for future
    • /
    • v.20 no.4
    • /
    • pp.285-294
    • /
    • 1987
  • The floodwave analysis for unsteady supercritical flow is performed. The numerical model. based on dynamic wave equation is presented by introducing the general Preissmann scheme and fore-sweep algorithm.The model is applied to Buffalo-Creek floods for proving its validity, and the simulation results have good agreements with those computed by DAMBRK and the observed data. It is also applied to Hyogi dam-break. The outflow hydrograph is derived based on the observed data and the analysis for the floodwave propagation is investigated.

  • PDF

Experimental Study on Influence of Levee Breach Depth on Flood Wave Propagation in Inundation Area (제방붕괴깊이 조건에 따른 제내지 범람홍수파 거동 실험)

  • Yoon, Kwang-Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.899-903
    • /
    • 2007
  • 본 연구에서는 제방붕괴에 의한 제내지 홍수파 거동 해석의 일환으로 제방붕괴시 제방의 붕괴깊이에 따른 제내지에서의 홍수파의 거동 양상을 수리실험을 통하여 고찰하였다. 다양한 제방붕괴폭과 초기하도수위 및 제방붕괴고 조건에 대해 범람홍수파의 전파속도와 제내지에서의 최대수심의 변화를 실험을 통하여 관찰하였다. 범람홍수파 선단(wave-front)의 이동속도는 동일한 하도수위조건에서는 붕괴고가 높을수록 감소하는 것으로 나타나 제방붕괴시 월류수심 $H_w$가 범람홍수파 전파속도에 영향을 준다는 것을 알 수 있었다. 모든 실험조건에서 최대수심은 일정한 경향을 띠고 있음을 알 수 있었다. 제방인근 지점에서 최대수심이 가장 크게 나타났고, 붕괴부로부터 일정 지점이 지나면 수위가 급격히 감소하여 거리에 관계없이 일정한 최대수심을 유지하는 것을 알 수 있었다. 동일 수위조건이라면 제방붕괴고가 낮을수록 제내지로 유입되는 유량이 증가하여 초기에 제방붕괴부 주위에서 수심이 높아지는 것으로 분석할 수 있다. 실험결과를 이용하여 범람홍수파의 전파속도와 최대수심을 산정하는 식을 무차원변수를 이용하여 제시하였다.

  • PDF

Propagation of tidal wave and resulted tidal asymmetry upward tidal rivers (감조하천에서 조석 전파 및 조석비대칭)

  • Kang, Ju Whan;Cho, Hong-Yeon
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.6
    • /
    • pp.433-442
    • /
    • 2021
  • In order to examine the characteristics of tidal wave from the estuary to upsteam of tidal river, tidal asymmetry was identified based on analysis of the harmonic constants of M2 and M4 tidal constituents in the domestic western coastal regions. As shallow water tide is greatly developed in the estuary, flood dominance in Han River and Keum River, and ebb dominance in Youngsan River are developed. These tidal asymmetries can be reconfirmed by analyzing the tidal current data. Unlike having reciprocating tidal current patterns in Keum and Youngsan estuaries, rotaing tidal current pattern is shown in the Han River estuary due to the complex topography and waterways around Ganghwa Island area. However, when residual current is removed, flood dominance is shown in consistency with the tide data. The tidal asymmetry in the estuary tends to intensify with the growth in shallow water tide as the tidal wave propagates to upstream of tidal river. Energy dissipation, in shallow Han River and Keum River classified as SD estuaries, is very large regarding bottom friction characteristics. On the other hand, the deep Youngsan River, classified as a WD estuary, shows less energy dissipation.

Development of integrated disaster mapping method (I) : expansion and verification of grid-based model (통합 재해지도 작성 기법 개발(I) : 그리드 기반 모형의 확장 및 검증)

  • Park, Jun Hyung;Han, Kun-Yeun;Kim, Byunghyun
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.1
    • /
    • pp.71-84
    • /
    • 2022
  • The objective of this study is to develop a two-dimensional (2D) flood model that can perform accurate flood analysis with simple input data. The 2D flood inundation models currently used to create flood forecast maps require complex input data and grid generation tools. This sometimes requires a lot of time and effort for flood modeling, and there may be difficulties in constructing input data depending on the situation. In order to compensate for these shortcomings, in this study, a grid-based model that can derive accurate and rapid flood analysis by reflecting correct topography as simple input data was developed. The calculation efficiency was improved by extending the existing 2×2 sub-grid model to a 5×5. In order to examine the accuracy and applicability of the model, it was applied to the Gamcheon Basin where both urban and river flooding occurred due to Typhoon Rusa. For efficient flood analysis according to user's selection, flood wave propagation patterns, accuracy and execution time according to grid size and number of sub-grids were investigated. The developed model is expected to be highly useful for flood disaster mapping as it can present the results of flooding analysis for various situations, from the flood inundation map showing accurate flooding to the flood risk map showing only approximate flooding.

Characteristics of Flood Wave Propagation in Inundation Area with Structures (제내지 구조물 설치에 따른 제방붕괴 범람홍수파 특성 분석)

  • Yoon, Kwang-Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.904-908
    • /
    • 2007
  • 도시 지역에서는 범람류에 의한 인명 피해 가능성이 크기 때문에 범람류 특성과 침수특성을 파악하는 하는 것이 매우 중요하다. 인명 피해를 야기시킬 수 위험요소로는 홍수파의 전파속도와 범람류의 유속 및 수심을 들 수 있다. 본 연구에서의 도시 지역의 특성이라 할 수 있는 구조물의 영향에 의한 범람홍수파의 거동에 대해서 추가적인 실험을 수행하여 기초적인 현상을 규명하고자 하였다. 실험결과, 홍수파의 전파속도는 제방 붕괴시 하도 초기수위의 영향을 많이 받는 것으로 나타났다. 즉, 제내지에 구조물 설치 유무가 범람홍수파 전파속도에 지배적인 영향을 미치는 초기 월류수위 효과를 감소시키지는 못하였다. 제내지에 구조물이 있음으로써 없는 경우에 비해 제방붕괴부 주위의 최대수심은 증가하였다. 이는 구조물에 의한 배수영향이 있음을 보이는 것이다. 이러한 현상은 구조물 설치밀도가 높은 군집구조물의 경우에 확실하게 나타났다. 실험결과를 이용하여 범람홍수파의 전파속도와 최대수심을 산정하는 식을 무차원변수를 이용하여 제시하였다.

  • PDF

Hydraulic Experiments of Flood Wave Propagation Due to Levee Breach in Inundation Area by Variation of Froude Number (Froude 수 변화에 따른 제방붕괴 범람홍수파의 전파 수리모형실험)

  • Kim, Soo-Young;Lee, Ji-Hun;Jung, Seok-Il;Lee, Seung-Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.148-148
    • /
    • 2012
  • 제방의 붕괴는 전체 수공구조물 중 70%를 차지하고 있으며, 그 중 월류에 의한 피해가 40%로 가장 많은 비율을 차지하고 있다. 제방을 월류하여 제내지로 유입되는 붕괴유량은 높은 속도로 제내지로 전파된다. 제방붕괴로 인한 피해를 줄이기 위해서는 이러한 붕괴파의 거동에 대한 연구가 필요하다. 기존의 연구들에서는 제방의 붕괴를 수문의 개방으로 가정하여 제내지 유입을 재현하였다. 본 연구에서는 제방의 규격은 높이 3 m, 정부폭 3 m, 사면경사가 1:2인 제방에 대해서 1/10 축척으로 수리모형실험을 실시하였으며 제방의 붕괴부를 모래를 축조하여 이동상으로 제작하였고 이동상 제방의 길이는 4 m이다. 제방에 월류를 유도하여 붕괴를 유발하였으며 홍수파가 제내지로 유입되는 속도 및 경향을 기록하였다. 제내지는 길이 6 m, 폭 6 m로 수평하게 제작하였다(그림 1 참조). Froude 수 변화에 따라 제내지로 유입되는 범람홍수파의 전파 경향을 분석하였으며 그 결과 Froude 수가 클수록 선단 홍수파의 방향이 하류방향으로 전파되는 경향을 나타냈다.

  • PDF

An exploratory study of stress wave communication in concrete structures

  • Ji, Qing;Ho, Michael;Zheng, Rong;Ding, Zhi;Song, Gangbing
    • Smart Structures and Systems
    • /
    • v.15 no.1
    • /
    • pp.135-150
    • /
    • 2015
  • Large concrete structures are prone to cracks and damages over time from human usage, weathers, and other environmental attacks such as flood, earthquakes, and hurricanes. The health of the concrete structures should be monitored regularly to ensure safety. A reliable method of real time communications can facilitate more frequent structural health monitoring (SHM) updates from hard to reach positions, enabling crack detections of embedded concrete structures as they occur to avoid catastrophic failures. By implementing an unconventional mode of communication that utilizes guided stress waves traveling along the concrete structure itself, we may be able to free structural health monitoring from costly (re-)installation of communication wires. In stress-wave communications, piezoelectric transducers can act as actuators and sensors to send and receive modulated signals carrying concrete status information. The new generation of lead zirconate titanate (PZT) based smart aggregates cause multipath propagation in the homogeneous concrete channel, which presents both an opportunity and a challenge for multiple sensors communication. We propose a time reversal based pulse position modulation (TR-PPM) communication for stress wave communication within the concrete structure to combat multipath channel dispersion. Experimental results demonstrate successful transmission and recovery of TR-PPM using stress waves. Compared with PPM, we can achieve higher data rate and longer link distance via TR-PPM. Furthermore, TR-PPM remains effective under low signal-to-noise (SNR) ratio. This work also lays the foundation for implementing multiple-input multiple-output (MIMO) stress wave communication networks in concrete channels.

A one-dimensional model for impact forces resulting from high mass, low velocity debris

  • Paczkowski, K.;Riggs, H.R.;Naito, C.J.;Lehmann, A.
    • Structural Engineering and Mechanics
    • /
    • v.42 no.6
    • /
    • pp.831-847
    • /
    • 2012
  • Impact from water-borne debris during tsunami and flood events pose a potential threat to structures. Debris impact forces specified by current codes and standards are based on rigid body dynamics, leading to forces that are dependent on total debris mass. However, shipping containers and other debris are unlikely to be rigid compared to the walls, columns and other structures that they impact. The application of a simple one-dimensional model to obtain impact force magnitude and duration, based on acoustic wave propagation in a flexible projectile, is explored. The focus herein is on in-air impact. Based on small-scale experiments, the applicability of the model to predict actual impact forces is investigated. The tests show that the force and duration are reasonably well represented by the simple model, but they also show how actual impact differs from the ideal model. A more detailed three-dimensional finite element model is also developed to understand more clearly the physical phenomena involved in the experimental tests. The tests and the FE results reveal important characteristics of actual impact, knowledge of which can be used to guide larger scale experiments and detailed modeling. The one-dimensional model is extended to consider water-driven debris as well. When fluid is used to propel the 1-D model, an estimate of the 'added mass' effect is possible. In this extended model the debris impact force depends on the wave propagation in the two media, and the conditions under which the fluid increases the impact force are discussed.

Analysis of Loop-Rating Curve in a Gravel and Rock-bed Mountain Stream (자갈 및 암반 하상 산지하천의 고리형 수위-유량 관계 분석)

  • Kim, Dong-Su;Yang, Sung-Kee;Yu, Kwon-Kyu
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.9
    • /
    • pp.853-860
    • /
    • 2012
  • It is well-known that loop effect of the stage-discharge relationship is formulated based on many field observations especially for the sand rivers. Theoretical understandings of the loop effect for the sand rivers have been widely provided, based on the facts that it is driven by the flood wave propagation and bed form changes over the given flood period. However, very few theoretical studies or field observations associated with loop-rating curves in the gravel or rock-bed mountain streams have been attempted so far, due particularly to the difficulties in the accurate discharge measurement during the flood in such field conditions. The present paper aims to report a unique loop-rating curve measured at a gravel and rock-bed mountain stream based on the flood discharge observation acquired during the typhoon, Muifa that passed nearby Jeju Island in summer of 2011. As velocity instrumentation, a non-intrusive Surface Velocity Doppler Radar to be suitable for the flood discharge measurement was utilized, and discharges were consecutively measured for every hour. Interestingly, the authors found that the hysteresis of the loop-rating curve was adverse compared to the typical trend of the sand bed streams, which means that the discharge of the rising limb is smaller than the falling limb at the same stage. We carefully speculate that the adverse trend of the loop-rating curve in the gravel bed was caused by the bed resistance change that works differently from the sand bed case.