• Title/Summary/Keyword: Flood management

Search Result 814, Processing Time 0.028 seconds

Current Status of Alien Plants in the Reservoir Shoreline in Korea (우리나라 저수지 호안에서 외래식물의 현황)

  • Cho, Hyunsuk;Cho, Kang-Hyun
    • Ecology and Resilient Infrastructure
    • /
    • v.2 no.4
    • /
    • pp.274-283
    • /
    • 2015
  • The reservoir shores seem to be vulnerable to biological invasion. The purpose of this research was to find out the floristic composition of alien plants and their relationship between environmental factors on reservoir shorelines in Korea. We investigated flora of alien plants and environmental factors of geomorphology, hydrology, water quality and soil on the shoreline of a total of 35 reservoirs with different water level managements. There were 56 species of alien plants, which was 15% of the total plant species identified in the study of reservoirs. A total of 57% of these alien species were the species which were introduced shortly after opening the port from 1876 to 1921 in Korea. More than 80% of the alien plants on the reservoir shores originated from America and Europe. The current distribution of Ambrosia trifida and Paspalum distichum were restricted in the central part and the southern region of the Korean Peninsula, respectively. The water level fluctuation, flood frequency at the median water level, water pollution index, coverage of rock exposure and mean degree of shoreline slope were determined as important environmental factors that have an effect on the characteristics of shoreline alien flora. Our results suggest that the reservoir shore was in danger of being invaded by alien plants due to the water level management and other human disturbances. For effective conservation of the reservoir ecosystem, periodic monitoring systems are required for the early detection of alien species on the reservoir shore.

The Water Circulation Improvement of Apartment Complex by applying LID Technologies - Focused on the Application of Infiltration Facilities - (LID 기술 적용을 통한 공동주택단지 물순환 개선 연구 - 침투시설 적용을 중심으로 -)

  • Suh, Joo-Hwan;Lee, In-Kyu
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.41 no.5
    • /
    • pp.68-77
    • /
    • 2013
  • Change in the Global Climate causes flood, drought, heavy snow, and rainfall patterns in the Korean Peninsula. A variety of alternatives related to climate change are considered. The foreign researchers are interested in Low Impact Development(LID); the utilization of water resources and eco friendly development, over 10 years ago. The research and development of related technology has been advanced to apply LID techniques in order to develop several projects in the country. However, sharing of technology or system that can be used easily in the private sector is insufficient. The performance of the elements of LID Technology has not been fully agreed. LID elements of this technology are easy to apply to Apartment complex. The elements are classified technology. The infiltration of elements performs the functions of apartment complex landscaping space technology applied to the target. The water cycle simulation(SWMM 5.0) and technology the implementation of the effectiveness is also verified. For this purpose, three different places in apartment complex to target by SWMM5.0 U.S. EPA conducted utilizing simulated rainfall and applying LID techniques before and after the simulated water cycle (infiltration, surface evaporation, and surface runoff) were conducted. The importance of green space in the LID techniques of quantitative and qualitative storm water control as well as the role of Apartment Housing is to promote Amenity. Remember that the physical limitations of apartment complex and smooth water circulation system for the application of LID integrated management techniques should be applied. To this end, landscapes, architecture, civil engineering, environmental experts for technical consilience between the Low Impact Development efforts are required.

Stochastic disaggregation of daily rainfall based on K-Nearest neighbor resampling method (K번째 최근접 표본 재추출 방법에 의한 일 강우량의 추계학적 분해에 대한 연구)

  • Park, HeeSeong;Chung, GunHui
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.4
    • /
    • pp.283-291
    • /
    • 2016
  • As the infrastructures and populations are the condensed in the mega city, urban flood management becomes very important due to the severe loss of lives and properties. For the more accurate calculation of runoff from the urban catchment, hourly or even minute rainfall data have been utilized. However, the time steps of the measured or forecasted data under climate change scenarios are longer than hourly, which causes the difficulty on the application. In this study, daily rainfall data was disaggregated into hourly using the stochastic method. Based on the historical hourly precipitation data, Gram Schmidt orthonormalization process and K-Nearest Neighbor Resampling (KNNR) method were applied to disaggregate daily precipitation into hourly. This method was originally developed to disaggregate yearly runoff data into monthly. Precipitation data has smaller probability density than runoff data, therefore, rainfall patterns considering the previous and next days were proposed as 7 different types. Disaggregated rainfall was resampled from the only same rainfall patterns to improve applicability. The proposed method was applied rainfall data observed at Seoul weather station where has 52 years hourly rainfall data and the disaggregated hourly data were compared to the measured data. The proposed method might be applied to disaggregate the climate change scenarios.

Development and Assessment of Hedging Rule for Han River Reservoir System Operation against Severe Drought (한강수계 저수지군의 갈수대응 운영을 위한 Hedging Rule의 개발과 적용성 평가)

  • Kim, Jeong Yup;Park, Myung Ky;Lee, Gi Ha;Jung, Kwan Sue
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.10
    • /
    • pp.891-906
    • /
    • 2014
  • This study suggests the hedging rule of MIP (Mixed Integer Programing) in counting the risk evaluation criteria of the objective function and constraints in order to provide the optimum operating rule in reservoir system as constraining water shortage as much as possible which may happen in the downstream control point of water supply in the aspect of water system management. The proposed model is applied to the Han-river reservoir system for two testing periods (Case I: Jan. 1993~Dec. 1997, Case II: Jan. 1999~Dec. 2003). The model based on the hedging rule with trigger volume, estimated in this study shows that in Case I, the monthly minimum discharge was $310.6{\times}10^6m^3$ in the single operation, $56.3{\times}10^6m^3$ in the joint operation, and $317.5{\times}10^6m^3$ in the hedging rule and also, in Case II, the monthly minimum discharge was found to be $204.2{\times}10^6m^3$ in the single operation, $111.2{\times}10^6m^3$ in the joint operation, and $243.7{\times}10^6m^3$ in the hedging rule. In conclusion, the hedging rule, proposed in this study can decrease vulnerability while guarantees reliability and resiliency.

Analysis and Comparison of Stream Discharge Measurements in Jeju Island Using Various Recent Monitoring Techniques (다양한 첨단 유량 계측기기를 활용한 제주도 하천 유출 비교 분석)

  • Yang, Sung-Kee;Kim, Dong-Su;Jung, Woo-Yul;Yu, Kwon-Kyu
    • Journal of Environmental Science International
    • /
    • v.20 no.6
    • /
    • pp.783-788
    • /
    • 2011
  • Different from the main land of South Korea, Jeju Island has been in difficulties for measuring discharge. Due to high infiltration rate, most of streams in Jeju Island are usually in the dried state except six streams with the steady base flow, and the unique geological characteristics such as steep slope and short traveling distance of runoff have forced rainfall runoff usually to occur during very short period of time like one or two days. While discharge observations in Jeju Island have been conducted only for 16 sites with fixed electromagnetic surface velocimetry, effective analysis and validation of observed discharge data and operation of the monitoring sites still have been limited due to very few professions to maintain such jobs. This research is sponsored by Ministry of Land, Transport and Maritime Affairs to build water cycle monitoring and management system of Jeju Island. Specifically, the research focuses on optimizing discharge measurement techniques adjusted for Jeju Island, expanding the monitoring sites, and validating the existing discharge data. First of all, we attempted to conduct discharge measurements in streams with steady base flow, by utilizing various recent discharge monitoring techniques, such as ADCP, LSPIV, Magnetic Velocimetry, and Electromagnetic Wave Surface Velocimetry. ADCP has been known to be the most accurate in terms of discharge measurement compared with other techniques, thus that the discharge measurement taken by ADCP could be used as a benchmark data for validation of others. However, there are still concerns of using ADCP in flood seasons; thereby LSPIV would be able to be applied for replacing ADCP in such flooded situation in the stream. In addition, sort of practical approaches such as Magnetic Velocimetry, and Electromagnetic Wave Surface Velocimetry would also be validated, which usually measure velocity in the designated parts of stream and assume the measured velocity to be representative for whole cross-section or profile at any specified location. The result of the comparison and analysis will be used for correcting existing discharge measurement by Electromagnetic Wave Surface Velocimetry and finding the most optimized discharge techniques in the future.

The Study on the Analysis of Stormwater Runoff Using RMS (Remote Monitoring System) (원격수위계측기를 이용한 강우유출 분석에 관한 연구)

  • Ham, Kwang-Jun;Kim, Joon-Hyun;Yi, Geon-Ho;Choi, Ji-Yong;Jeong, Ui-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.13 no.6
    • /
    • pp.285-294
    • /
    • 2004
  • The purpose of this study is to understand the quantitative change of water resources using RMS(Remote Monitoring System) which takes real time data with high reliability. Also, the characteristic of stormwater runoff was understood by the application of the above system for three streams (Jiam, Yulmun, and Gongji stream) in Chuncheon City. The detailed results of these studies are as follows; RMS(Remote Monitoring System) was constructed by the combination of the automatic water-level meter, which measures water-level of streams at all times, and the wireless communication system sending real-time data from the meter. This system is used to evaluate the stormwater runoff in watersheds and the quantitative changes of streams. It is possible to overcome the limit of field investigations needed, which takes a lot of manpower and time, and it is very efficient to provide the reliable flowrate data. Also, it can be applied to the disaster prevention system for flood because the change of flowrate in stream is monitored at real-time. For 3 streams with different watershed characteristics, correlation equations induced from the relation analysis results. In terms of the relation between water-level and flowrate, flowrate was increased rapidly as the water-level rises in case of small watershed and steep slope. The application results of the proposed system for 3 streams (Jiam, Yulmun, Gongji) in Chuncheon city are as follows; The remote monitoring system was very useful for acquisition of the flow rate in stream that are basic data to understand pollutants runoff in watershed. In case of no-rainy day, the runoff ratio for pollutant loading rate was the highest level in Yulmun stream(BOD:2.3%, TN:20.2%, TP:1.2%). So, it shows the management of pollution source is needed such as rehabilitation of sewer line. Runoff ratio of total phosphorus by rainfall in Gongji watershed was increased about 19 times than no-rainy day, which is estimated as the influence of sewer overflow.

Construction of a artificial levee line in river zones using LiDAR Data (라이다 자료를 이용한 하천지역 인공 제방선 추출)

  • Choung, Yun-Jae;Park, Hyeon-Cheol;Jo, Myung-Hee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.185-185
    • /
    • 2011
  • Mapping of artificial levee lines, one of major tasks in river zone mapping, is critical to prevention of river flood, protection of environments and eco systems in river zones. Thus, mapping of artificial levee lines is essential for management and development of river zones. Coastal mapping including river zone mapping has been historically carried out using surveying technologies. Photogrammetry, one of the surveying technologies, is recently used technology for national river zone mapping in Korea. Airborne laser scanning has been used in most advanced countries for coastal mapping due to its ability to penetrate shallow water and its high vertical accuracy. Due to these advantages, use of LiDAR data in coastal mapping is efficient for monitoring and predicting significant topographic change in river zones. This paper introduces a method for construction of a 3D artificial levee line using a set of LiDAR points that uses normal vectors. Multiple steps are involved in this method. First, a 2.5-dimensional Delaunay triangle mesh is generated based on three nearest-neighbor points in the LiDAR data. Second, a median filtering is applied to minimize noise. Third, edge selection algorithms are applied to extract break edges from a Delaunay triangle mesh using two normal vectors. In this research, two methods for edge selection algorithms using hypothesis testing are used to extract break edges. Fourth, intersection edges which are extracted using both methods at the same range are selected as the intersection edge group. Fifth, among intersection edge group, some linear feature edges which are not suitable to compose a levee line are removed as much as possible considering vertical distance, slope and connectivity of an edge. Sixth, with all line segments which are suitable to constitute a levee line, one river levee line segment is connected to another river levee line segment with the end points of both river levee line segments located nearest horizontally and vertically to each other. After linkage of all the river levee line segments, the initial river levee line is generated. Since the initial river levee line consists of the LiDAR points, the pattern of the initial river levee line is being zigzag along the river levee. Thus, for the last step, a algorithm for smoothing the initial river levee line is applied to fit the initial river levee line into the reference line, and the final 3D river levee line is constructed. After the algorithm is completed, the proposed algorithm is applied to construct the 3D river levee line in Zng-San levee nearby Ham-Ahn Bo in Nak-Dong river. Statistical results show that the constructed river levee line generated using a proposed method has high accuracy in comparison to the ground truth. This paper shows that use of LiDAR data for construction of the 3D river levee line for river zone mapping is useful and efficient; and, as a result, it can be replaced with ground surveying method for construction of the 3D river levee line.

  • PDF

A Study on Geographical Analysis of Natural Disaster and Disaster Risk Management in Vietnam (베트남 자연재해의 지리적 분석 및 재난위험관리에 관한 고찰)

  • Yoon, Cho-Rong;Yoo, Young-Min;Lee, Ha-Na;Lee, Ja-Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.476-476
    • /
    • 2011
  • 베트남은 자연재해로 인해 매년 평균 750명 이상의 사망자가 발생하고 있으며, 경제적인 피해 또한 한해 GDP의 1.5%에 달하고 있다. 저먼워치(Germanwatch)의 2010년 세계기후위험지수(Global Climate Risk Index, GCRI)의 전 지구적 기후재난에 관한 국가별 순위 조사에서 베트남은 4위에 기록되었다. 베트남의 자연재해는 상당 비중이 풍수해에 집중 되어 전체 재해의 86%를 차지하고 있고, 이는 대부분 해안 지대와 강 유역의 홍수 및 범람에서 비롯된 것이다. 베트남 전체인구의 약 70%가 상습적 홍수와 범람 발생 지역인 해안가에 거주하고 있어 재난에 예방 및 복구 관리에 대한 국가 차원의 방안이 시급한 실정이다. 본 연구에서는 과거 30년간의 풍수해 관련 재해에 대한 기록상 추이를 통해 공간적으로 재난에 취약한 지역적 분포를 살펴보고, 그 지역의 지리적 특성을 분석하여 재해에 관한 종합적 고찰을 하였다. 벨기에 루뱅대학 부설 재난역학연구센터(Centre for Research on the Epidemiology of Disasters, CRED)의 EM-DAT를 이용하여 과거 기록상의 개괄적인 재해양상에 관한 추이를 살펴본 결과 대부분의 재난은 풍수해에 집중이 되어 있음을 분석하였고, 베트남 풍수해조정기관인 홍수및폭풍조정중앙위원회(Central Committee for Flood and Storm Control, CCFSC)의 최근 30년간 풍수해에 관련된 통계 자료를 정리하여 상습적 재난 피해지역을 지도상에 표시하였다. 이 때 지구지도제작운영위원회(International Steering Committee for Global Mapping, ISCGM)의 D_WGS_1984 Datum을 바탕으로 한 베트남 shape file을 이용하여 풍수해에 따른 인명피해, 경제적 손실, 발생횟수 등에 관한 사항을 일반화 시켜 재난 취약지역을 지리적으로 분석하였다. Thanh hoa, Quang nam, Binh Dinn, Camau성이 풍수해와 관련된 재난에 취약하게 노출되어 있음을 도출하였다. 재난에 상대적으로 취약한 이들 지역에 대한 현재의 재난 관리는 어떻게 이루어지고 있는지에 관해 현재의 풍수해관리 사업단의 조직적 구조와 그 기능 및 역할을 살펴보고, 국제적 원조 사례를 분석하여 상습적으로 재난의 위험 지역에 대한 지속적인 관리와 복구를 어떻게 이루어 나갈 것인지에 대한 방안 및 제언에 관하여 논의하고자 한다. 베트남의 재난 관리에 관한 지리적인 종합 분석은 기존 양상의 재해에 대한 방안을 구축하는 데 대한 제언뿐만 아니라 기후변화와 관련된 재난을 예측하고 관리 방안을 설정하는 데 기초 자료를 제공할 수 있을 것이다.

  • PDF

Development of Water Level Prediction Models Using Deep Neural Network in Mountain Wetlands (딥러닝을 활용한 산지습지 수위 예측 모형 개발)

  • Kim, Donghyun;Kim, Jungwook;Kwak, Jaewon;Necesito, Imee V.;Kim, Jongsung;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.22 no.2
    • /
    • pp.106-112
    • /
    • 2020
  • Wetlands play an important function and role in hydrological, environmental, and ecological, aspects of the watershed. Water level in wetlands is essential for various analysis such as for the determination of wetland function and its effects on the environment. Since several wetlands are ungauged, research on wetland water level prediction are uncommon. Therefore, this study developed a water level prediction model using multiple regression analysis, principal component regression analysis, artificial neural network, and DNN to predict wetland water level. Geumjeong-Mountain Wetland located in Yangsan-city, Gyeongsangnam-do province was selected as the target area, and the water level measurement data from April 2017 to July 2018 was used as the dependent variable. On the other hand, hydrological and meteorological data were used as independent variables in the study. As a result of evaluating the predictive power, the water level prediction model using DNN was selected as the final model as it showed an RMSE value of 6.359 and an NRMSE value of 18.91%. This research study is believed to be useful especially as a basic data for the development of wetland maintenance and management techniques using the water level of the existing unmeasured points.

Development of a Multifunctional Design Concept to Improve Constructed Wetland Performance (인공습지의 성능향상을 위한 다기능 설계기법 개발)

  • Reyes, N.J.D.G.;Choi, H.S.;Kim, L.H.
    • Journal of Wetlands Research
    • /
    • v.22 no.2
    • /
    • pp.161-170
    • /
    • 2020
  • Constructed wetlands (CWs) are widely used to solve water quality problems caused by diffuse pollution from agricultural areas; however, phytoplankton blooms in CW systems can occur due to long hydraulic retention time (HRT), high nutrient loading, and exposure to sunlight. This study was conducted to evaluate the efficiency of a CW designed to treat agricultural diffuse pollution and develop a design concept to improve the nature-based capabilities of the system. Monitoring was conducted to assess contribution of individual wetland components (i.e. water, sediments, and plants) in the treatment performance of the system. During dry days, the turbidity and particulates concentration in the CW increased by 80 to 197% and 10 to 87%, respectively, due to the excessive growth of phytoplankton. On storm events, the concentration of particulates, organics, and nutrients were reduced by 43% to 70%, 22% to 49%, and 15% to 69% due to adequate water circulation and constant flushing of pollutants in the system. Based on the results, adequate water circulation is necessary to improve the performance of the CW. Free water surface CWs are usually designed to have a constant water level; however, the climate in South Korea is characterized by distinct dry and rainy seasons, which may not be suitable for this conventional design. This study presented a concept of multifunctional design in order to solve current CW design problems and improve the flood control, water quality management, and environmental functions of the facility.