• Title/Summary/Keyword: Flood management

Search Result 814, Processing Time 0.03 seconds

Analysis of Future Meteorological Drought Index Considering Climate Change in Han-River Basin (기후변화에 따른 한강유역의 기상학적 가뭄지수 분석)

  • Kim, Duckhwan;Hong, Seung Jin;Han, Daegun;Choi, Changhyeon;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.18 no.4
    • /
    • pp.432-447
    • /
    • 2016
  • The increased frequency of drought and flood due to climate change was a global problem. In particular, drought was recognized as a serious environmental, ecological, social, and economic disaster. Therefore, it is necessary to study the measures to prevent it. In this study, we will estimate the meteorological drought index in the Han River Basin and analyze the impact of climate change on drought. The change of the meteorological drought occurrence due to climate change in the Han River separated by the common drought and severe drought was analyzed using the Representative Concentration Pathways (RCPs) scenarios provided by the Intergovernmental Panel on Climate Change (IPCC). The years 1973 - 2010 were selected for analysis in the current period. Using the scenario, we separated the future period (Target I: 2011 - 2039, Target II: 2040 - 2069, Target III : 2070 - 2099). The number of occurrences of less than -1.0 and -1.5 standard precipitation index were analyzed by SPI 3, 6, 12. Looking at the results, trends in rainfall in the Han River was expected to increase from the current figures, the occurrence of drought is predicted to decline in the future. However, the number of drought occurrence was analyzed to increase toward long-term drought. The number of severe drought occurrences was usually larger than the common drought estimated. Additional studies may be considered in addition to the agricultural drought, hydrological drought, socio-economic drought. This will be done by using efficient water management. The results can be used as a basis for future drought analysis of the Han River.

Large Scale SWAT Watershed Modeling Considering Multi-purpose Dams and Multi-function Weirs Operation - For Namhan River Basin - (다목적 댐 및 다기능 보 운영을 고려한 대유역 SWAT 모형 구축기법 연구 - 남한강 유역을 대상으로 -)

  • Ahn, So Ra;Lee, Ji Wan;Jang, Sun Sook;Kim, Seong Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.4
    • /
    • pp.21-35
    • /
    • 2016
  • This study is to evaluate the applicability of SWAT (Soil and Water Assessment Tool) model for multi-purpose dams and multi-function weirs operation in Namhan river basin ($12,577km^2$) of South Korea. The SWAT was calibrated (2005 ~ 2009) and validated (2010 ~ 2014) considering of 4 multi-purpose dams and 3 multi-function weirs using daily observed dam inflow and storage, evapotranspiration, soil moisture, and groundwater level data. Firstly, the dam inflow was calibrated by the five steps; (step 1) the physical rate between total runoff and evapotranspiration was controlled by ESCO, (step 2) the peak runoff was calibrated by CN, OV_N, and CH_N, (step 3) the baseflow was calibrated by GW_DELAY, (step 4) the recession curve of baseflow was calibrated by ALPHA_BF, (step 5) the flux between lateral flow and return flow was controlled by SOL_AWC and SOL_K, and (step 6) the flux between reevaporation and return flow was controlled by REVAPMN and GW_REVAP. Secondly, for the storage water level calibration, the SWAT emergency and principle spillway were applied for water level from design flood level to restricted water level for dam and from maximum to management water level for weir respectively. Finally, the parameters for evapotranspiration (ESCO), soil water (SOL_AWC) and groundwater level fluctuation (GWQMN, ALPHA_BF) were repeatedly adjusted by trial error method. For the dam inflow, the determination coefficient $R^2$ was above 0.80. The average Nash-Sutcliffe efficiency (NSE) was from 0.59 to 0.88 and the RMSE was from 3.3 mm/day to 8.6 mm/day respectively. For the water balance performance, the PBIAS was between 9.4 and 21.4 %. For the dam storage volume, the $R^2$ was above 0.63 and the PBIAS was between 6.3 and 13.5 % respectively. The average $R^2$ for evapotranspiration and soil moisture at CM (Cheongmicheon) site was 0.72 and 0.78, and the average $R^2$ for groundwater level was 0.59 and 0.60 at 2 YP (Yangpyeong) sites.

Spatial Assessment of Effects of Near-Stream Groundwater Pumping on Streamflow Depletion (하천변 지하수 양수로 인한 하천수 감소 영향의 공간적 평가 - 죽산천 유역을 중심으로 -)

  • Lee, Jeongwoo;Kim, Nam Won;Chung, Il Moon;Lee, Min Ho
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.7
    • /
    • pp.545-552
    • /
    • 2015
  • The objective of this study is to spatially assess the streamflow depletion due to groundwater pumping near the main stream of Juksanchoen watershed. The surface water and groundwater integrated model, SWAT-MODFLOW, in this study, was used to simulate streamflow responses to each groundwater pumping from wells located within 500m from the stream. The simulated results showed that the streamflow depletion rate divided by the pumping rate for each well location ranges from 20% to 96%. In particular, the streamflow depletion exceeds 60% of pumping rate if the distance between stream and well is lower than 100 m, hydraulic diffusivity is higher than $500m^2/d$, and streambed hydraulic conductance is above 25m/d. The simulated results were also presented in the form of spatial distribution maps that indicate the fraction of the well pumping rate in order to show the effect of a single well more comprehensively and easily. From the developed areal distribution of stream depletion, higher and more rapid responses to pumping occur near middle-downstream reach, and the spatially averaged percent depletion is about 66.7% for five years of pumping. The streamflow depletion map can provide objective information for the near-stream groundwater permission and management.

Comparative Analysis on Seasonal Water Quality Factors in Multipurpose Dams and Agricultural Reservoirs (농업용저수지와 다목적댐의 계절별 수질인자의 특성 비교분석)

  • Kim, Eungseok;Sim, Kuybum;Kim, Taeseung;Jeong, Donghwan;Yoon, Johee;Kang, Dookee;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.102-108
    • /
    • 2012
  • This study has performed comparative analysis on characteristics of reservoirs in their use through correlation analysis on seasonal variation of water quality factors in agricultural reservoirs and multipurpose dams. Agricultural reservoirs show the high relationship between Chl-a and other water quality factors while the correlation among COD, BOD, and SS is strong in multipurpose dams. Agricultural reservoirs have the high relationship between various water quality factors in season such as Chl-a and pH ($R^{2}=0.294$) in Spring, pH and water temperature ($R^{2}=0.246$) in Summer, and Chl-a and BOD ($R^{2}=0.435$) in Fall, and between COD and BOD ($R^{2}=0.370$) in Winter, respectively, for Sapgyo reservoir while Chl-a and T-P ($R^{2}=0.739$) in Spring, T-P and SS ($R^{2}=0.876$) in Summer, and Chl-a and SS ($R^{2}=0.600$) in Fall, and between COD and SS ($R^{2}=0.998$) in Winter, respectively, for Seokmun reservoir. Boryeong dam has the strong relationship between T-P and SS ($R^{2}=0.511$) in Spring while the relation between COD and SS is high in other seasons with the values of $R^{2}$ of 0.362, 0.665, and 0.500 in Summer, Fall, and winter, respectively. The first and second water quality factors in relationship are COD and BOD in Sapgyo and Seokmun reservoirs, which is similar to the characteristics in Winter for multipurpose dams. Chl-a has no relationship with other water quality factors in Boryeong dam in operation for both flood control and low water regulation purposes. The result of this research is expected to provide contributions to the seasonal water quality control and analysis on characteristics for each reservoir by monitoring.

Climate Change Impacts and Adaptation on Hydrological Safety Perspectives of Existing Dams (기후변화에 따른 댐의 수문학적 안전성 평가 및 적응방안 고찰)

  • Park, Jiyeon;Jung, Il Won;Kwon, Ji Hye;Kim, Wonsul
    • Journal of Wetlands Research
    • /
    • v.21 no.spc
    • /
    • pp.149-156
    • /
    • 2019
  • Assessing the hydrological safety of existing dams against climate change and providing appropriate adaptation measures are important in terms of sustainable water supply and management. Korean major dams ensure their safety through periodic inspections and maintenance according to 'Special Act on the safety control and maintenance of establishments'. Especially when performing a full safety examination, principal engineer must assess the hydrological safety and prepare for potential risks. This study employed future probable maximum precipitation (PMP) estimated using outputs of regional climate models based on RCP4.5 and RCP8.5 greenhouse-gas emission scenarios to assess climate change impact on existing dam's future hydrological safety. The analysis period was selected from 2011 to 2040, from 2041 to 2070, and from 2071 to 2100. Evaluating the potential risk based on the future probable maximum flood (PMF) for four major dams (A, B, C, I) showed that climate change could induce increasing the overflow risk on three dams (A, B, I), although there are small differences depending on the RCP scenarios and the analysis periods. Our results suggested that dam managers should consider both non-structural measures and structural measures to adapt to the expected climate change.

An Evaluation of Water Supply Reliability Using AWS Data in Korea (AWS 자료를 이용한 우리나라의 물 공급 안전도 평가)

  • Moon, Jang-Won;Choi, Si-Jung;Kang, Seong-Kyu;Lee, Jeong-Ju
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.8
    • /
    • pp.743-753
    • /
    • 2012
  • AWS data can be used effectively to understand the rainfall characteristics in Korea. In spite of this advantage, AWS data have been used restrictively in flood control analysis and the study on water use analysis such as water balance assessment is very insufficient. In this study, AWS data are used to analyze spatial rainfall characteristics quantitatively and water balance assessment is performed based on AWS data. Water balance assessment is carried out from year 2002 to year 2010 considering water supply networks in Korea. The analysis shows that year 2009 is the driest year during 9 years (2002~2010) and the regions with low level water supply reliability are concentrated in the west coast of Jeonnam and the upper region of the Nakdong River. As a result, the regions that have a lack of available water resources such as the coastal and insular areas are vulnerable to droughts. Therefore, regional water supply and management plans are urgently needed. Additionally, AWS data, which consider rainfall characteristics of the coastal and insular areas, can be useful in water balance assessment.

Work plan for flood disaster management considering climate changes (기후변화를 고려한 풍수해 재난관리 업무방향)

  • Shim, Kee-Oh;Yoo, Byung-Tae;Park, Kyoung-Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.337-341
    • /
    • 2009
  • 지구의 평균기온이 지속적으로 상승함에 따라 지구온난화로 인한 기후변화는 지구에 분포되어 있는 극지방의 빙하들을 녹임으로써 지구의 물 순환시스템을 교란시켜 집중호우와 태풍, 가뭄, 낙뢰 등 예측을 불허하는 극한 기상변화를 발생시키고 있다. 기후변화로 인해 바다의 수온이 상승함에 따라 빙하가 녹거나 바닷물이 팽창하여 해수면이 상승하게 되는 바, 1990년 대비 2000년대에 동해바다에서는 상승률이 0.07cm/yr이던것이 0.20cm/yr로 나타났으며, 서해바다에서는 0.14cm/yr이던 것이 0.18cm/yr로 나타났고, 남해바다에서는 0.32cm/yr이던 것이 0.34cm/yr 로 평균상승률이 1990년대에 비해 증가하는 것으로 관측되었다. 본 연구에서는 기후변화로 인한 자연재해 피해를 최소화하기 위해 소방방재청의 현행 업무를 중심으로 재해를 예방하기 위한 풍수해 업무별 추진해야할 연구과제들을 조사 제시하고자 하였다. 기후변화에 따른 재난분야의 정책과 관련된 연구적인 측면의 분야를 제시하기 위하여 최근에 나타난 자연재난 피해현상에 대한 원인 및 대책을 기초로 하여, 재난관리분야에서 추진하고 있는 업무를 계승 발전시킴으로써 기후변화로 인한 피해를 예방 또는 최소화 할 수 있는 방향으로 제시하고자 하였다. 기후변화에 따른 소방방재청의 풍수해 재난관리 분야 종합계획을 제시하기 위해 본 연구에서는 기후변화 관련 최근 국내 외의 동향을 먼저 살펴보았다. 1977년부터 2006년까지 우리나라 최근 30년간의 재해연보에 제시되어 있는 시설물별 피해액을 조사하여 시설물 중 피해액이 많은 순으로 주요피해 시설물을 파악하였다. 여기에서 주요피해 시설물로는 하천, 도로, 소하천, 수리, 농경지, 사방 등의 순으로 나타났다. 이러한 주요시설물에 대한 피해현황을 파악하기 위하여 대규모 풍수해 피해에 대한 현황, 원인분석 및 대책이 제시되어 있는 각종 피해조사 보고서, 연구보고서 및 전문 학술지 기사들을 수집 분석하였으며, 수집된 자료를 토대로 각각의 재해피해현상에 대하여 시설물의 피해현상, 원인 및 대책을 분류하여 분석하고자 한다. 재난관리 분야 중 우수유출저감시설 관련 제시된 업무방향을 보면 침투 저류를 위한 우수유출저감시설의 개발연구, 침수위험지구의 지정기준 등급별 방재대책 방안연구, 유역별 재해위험 저감능력의 평가기준 개발, 단위구역별 우수유출저감시설의 확보기준 연구, 우수유출저감시설의 국내 표준화 방안 연구, 우수유출저감시설 설치자에 대한 인센티브 도입방안 연구, 피해지역의 매입을 통한 저류지화 방안 연구, 우수유출저감시설 설치효과의 교육 홍보 및 우수유출저감시설의 국제 표준화 기준 제정 추진 등이 필요할 것으로 조사되었다. 여기에서 제시된 재난관리 업무분야별 많은 연구과제들이 향후 연구할 수 있는 재원확보로 이어져 재난관리의 업무발전에 도움이 될 수 있도록 하여야 하겠으며, 주요 결론으로는 다음과 같다. 첫째, 우리나라는 기후변화에 대해서는 기존에 소극적으로 대응하였으나 기후변화대책기획단을 만들어 적극적으로 대처하고 있으므로 기후변화와 관련된 여러분야가 활성화 될 것으로 판단된다. 둘째, 국외의 기후변화 대응사례에서 보면 시설물의 규모를 볼 때 큰 규모의 예산을 투입하는 것으로 판단되는바, 이는 향후의 불확실한 기후변화에 대비하는 선진적인 판단으로 검토되어야 할 것이다. 셋째, 풍수해 관련 주요업무 8가지에 대하여 추진해야할 업무방향 48개를 선정 제시하였다.

  • PDF

A study on the applicability of power usage method for the analysis of river water intake (하천수 취수량 분석을 위한 전력량법의 적용성 연구)

  • Baek, Jongseok;Kim, Chiyoung;Cha, JunHo;Song, Jaehyun
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.12
    • /
    • pp.975-984
    • /
    • 2019
  • As an essential prerequisite for systematic and integrated management of river water, it is necessary to secure the basic data such as discharge supplied to the river and released from the river. Under the current permit system for river water use, 59.1% of licensed facilities were found to have no discharge meters in 2017, especially for agricultural water, which makes it difficult to secure reliable data as a large portion of the reports are voluntarily reported by users. In this study, the indirect discharge measurement method of calculating the discharge through the power usage of the pumping station was applied to secure reliable discharge data. In particular, focusing on the fact that the discharge calculated by the power usage method differed with the actual discharge according to the level of the river, the study was conducted on improving the power usage method reflecting the river water level and improving the accuracy of discharge data. Analysis of the discharge calculated using the power usage method considering river water level using the correlation analysis method such as regression analysis, percent difference, root mean square error etc. confirmed that the results are not high compared to the conventional power usage method, but are slightly more approximated to the actual discharge. Therefore, although reliable discharge data can be obtained from the existing power usage method, it is expected that more accurate data on intaking water of river water can be obtained if the improved power usage method is used at points where the variation in the water level of the river is large.

Analysis of Non-Point Source Pollution Discharge Characteristics in Leisure Facilities Areas for Pattern Classification (패턴분류를 위한 위락시설지역의 비점오염원 유출특성분석)

  • Kim, Yong-Gu;Jin, Young-Hoon;Park, Sung-Chun;Kim, Jung-Min
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.12
    • /
    • pp.1029-1038
    • /
    • 2010
  • In meteorology Korea has 2/3 of rain of annual total rainfall at the month of Jun through Sept and it has possibility to have serious flood damage because geographically it is composed of mountainous area with steep slope which account for 70% of its country. Also, the increase of impervious layer due to industrialization and urbanization causes direct runoff, which deteriorates contamination of rivers by moving the contaminated material on the surface at the beginning of rain. In particular, the area of leisure facilities needs the management of water quality absolutely because dense population requires space of park function and place to relax and increases moving capability of non-point pollution source. For disposition of rainfall & runoff, the standard of initial rainfall, which is to be used for the computation of disposition volume, is significant factors for the runoff study of non-point pollution source, Until now, a great deal of study has been done by many researchers. However, it is the current reality that the characteristics of runoff varies according to land protection comprising river basin and the standard of initial rainfall by each researcher is not clearly defined yet. Therefore, in this research, it is suggested that, with the introduction of SOM (Self-Organizing Map), the standard of initial rainfall be determined after analyzing each sectional data by executing pattern classification about runoff and water quality data measured at the test river basin for this research.

Application of Stable Isotopes in Studies of Gas Exchange Processes Between Biosphere and the Atmosphere (생태계와 대기 간의 가스 교환 메카니즘 규명을 위한 안정동위원소의 응용)

  • Han, Gwang-Hyun;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.2
    • /
    • pp.242-251
    • /
    • 2010
  • In comparison with other terrestrial ecosystems, rice paddies are unique because they provide the primary food source for over 50% of the world's population, and act as major sources of global methane. The present paper summerizes a long-term field study that combine carbon isotopes, and canopy-scale flux measurements in an irrigated rice paddy, in conjugation with continuous monitoring of environmental, and vegetational factors. Both $CO_2$, and methane fluxes were largely influenced by soil temperature, and moisture conditions, especially across drainage events. Soil-entrapped $CO_2$, and methane showed a gradually increasing trend throughout growing season, but rapidly decreased upon flood water drainage. These variations in flux were well correlated with changes in concentration, and isotope ratio of soil $CO_2$, and methane, and of atmospheric $CO_2$, and methane within, and above the canopy. The isotopic signature of the gas exchange process varied markedly in response to change in contribution of soil respiration, belowground storage, fraction of $CO_2$ recycled, magnitude, and direction of $CO_2$ exchange, transport mechanism, and fraction of methane oxidized. Our results clearly demonstrate that stable isotope analysis can be a useful tool to study underlying mechanisms of gas exchange processes under natural conditions.